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Tracer dispersion within a highly convective planetary boundary layer is studied by
means of a large-eddy simulation (LES) model for the continuous phases describing
the temperature and velocity fields, and with the Lagrangian tracking of particle
trajectories. Particle velocities are decomposed into their resolved and unresolved
(or sub-grid) components. The former are evaluated by interpolation from the LES
velocity field, the latter are given by a Lagrangian kinematic model that correctly
describes the turbulent dispersion of clouds of particles. It is shown that, thanks to the
Lagrangian sub-grid model, a clear inertial range is detectable in the time domain.
In this range, particle separation grows according to Richardson’s law, and nicely
compares with previous experimental and numerical measurements. The collective
motion of four particles, initially located at the vertices of regular tetrahedra, is
also studied. The evolution of tetrad shape and orientation is contrasted with those
obtained in homogeneous and isotropic flows. Results show that an agreement is
achieved at small time lags. At larger times, the boundary layer reveals its anisotropic
structure and the tetrad shape statistics deviate from results obtained in ideal flows.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878318]

I. INTRODUCTION

Warm cloud formation, bubbly convective flows, pollutant dispersion in the atmosphere are
instances of phenomena governed by the turbulent nature of the advecting flow, and where a
continuous phase coexists with a discrete one.1–3 The simplest case is when the discrete phase is due
to small, neutrally buoyant tracer particles – i.e., following fluid streamlines – seeding a statistically
isotropic and homogeneous turbulent (HIT) flow. In such a case, the Eulerian statistics interfaces
with the Lagrangian statistics of turbulence: from the Eulerian point of view, we can study the
diffusion of scalar-field fluctuations, but more naturally from the Lagrangian point of view, we can
study tracer pair4 or multiparticle dispersion.5, 6

Tracer pair dispersion in HIT is widely studied both experimentally and numerically (see
Sawford,7 and Salazar and Collins8 for two recent reviews on the topic). The theoretical basis for
these studies was put by Richardson in 1926 in a seminal work,9 by observing the way balloons
separate in the atmosphere, well before the contribution of Kolmogorov and Obukhov on scalar
turbulence.10

Despite the elapsed time, experimental studies11–13 on Lagrangian turbulence have not been as
numerous as those in the Eulerian reference frame, because of the difficulties in obtaining long, high
frequency records of Lagrangian trajectories in fully developed turbulent flows at moderate to high
Reynolds numbers. Recent technological improvements in recording high frequency, high resolution
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data have however renewed the interest in the topic, and there are now a number of laboratory studies
focusing either on single tracer statistics,14 and on pair15, 16 or multi-particle dispersion.17, 18 Often
at comparable Reynolds number, a large amount of direct numerical simulations (DNS) studies
have been performed focusing on Lagrangian particle dispersion in two-dimensional and three-
dimensional homogeneous and isotropic flows,19–22 also in the case of inertial particles,23 or in
anisotropic and/or inhomogeneous flows.24, 25

In brief, Richardson’s theory for pair dispersion in HIT states that given a pair of tracers – of
position vector x1(t) and x2(t) = x1(t) + r(t), respectively – having at time t0 a small separation r0,
the probability to observe at a later time t > t0 a pair separation r > r0 depends on the amplitude r
only. Asymptotically, the probability density function (PDF) p(r, t|r0, t0) is also expected to become
independent of the initial conditions, i.e., p(r, t|r0, t0) = p(r, t) for t � t0 and r � r0. Richardson9

also derived the shape of this PDF, which is non-Gaussian but self-similar,

p(r, t) � r2

〈r2(t)〉3/2
exp

(
−B

r2

〈r2(t)〉
)1/3

, (1)

where B is a dimensionless constant. Richardson’s9 approach is exact for a self-similar velocity field,
with no temporal correlations.5, 26 Both these hypotheses are not verified for real turbulent flows, and
very recently their validity has been questioned in experiments16, 28 and in numerical studies.27, 29, 30

Nevertheless, Richardson’s9 approach represents the theoretical basis to study dispersion, and more-
over it gives predictions which are to some extent valid.20, 21, 27

The goal of this paper is to contribute to the understanding of the relative motion of pairs
and clouds of particles in a turbulent flow, generated by atmospheric convection. The atmospheric
convective boundary layer is a well studied instance of strongly anisotropic and inhomogeneous
flow,31–33 whose dynamics and statistics are governed by turbulence generated both by thermal
and mechanical effects, due to convection and shear, respectively. Relative dispersion in non-ideal
flows has been considered in observational studies in both the atmosphere and the ocean (see, e.g.,
LaCasce34). Results35 consistent with Richardson’s9 1926 observations have been found for balloon
separations in the range of scales of 100 km ≤r ≤ 1000 km.

Here, the focus is on much shorter scales r ≤ 1 km, since we deal with the atmospheric convec-
tive boundary layer. The setup of our dispersion study reproduces that of classical laboratory,36, 37 and
numerical experiments,38–40 which consider a scalar emission from an instantaneous line source. To
study tracer dispersion in the CBL, we carried out a numerical study, described in Sec. II, by means
of a large-eddy simulation (LES) model for the Eulerian velocity and temperature fields,33, 41–45

complemented by the Lagrangian tracking of thousands of tracer particles. The particle veloc-
ity is obtained by a superposition of two contributions: the first results from the LES velocity
field; the second from a sub-grid scale (SGS) kinematic model,46 that correctly reproduces the
dispersion statistics of pairs and groups of tracers, in homogeneous and isotropic turbulence. In
Sec. III, pair dispersion is studied in terms of the separation and relative velocity statistics: as
already highlighted in ideal flows,20, 21 the intermittent nature of Eulerian velocity fluctuations
leaves its signature on the moments of Lagrangian separations and relative velocities of pairs of
tracers.

More insights on Lagrangian turbulence comes from the evolution of four particles organized in
tetrahedra, described in Sec. IV. The tetrads change their initial geometrical properties, such as shape
and size, depending on the local turbulence.47, 48 We contrast the temporal evolution of the tetrads
in a CBL, with numerical and analytical results obtained in statistically isotropic turbulence.48–50

In particular we show that, at large times, the anisotropy and inhomogeneity of the CBL lead to
different shape and orientation statistics with respect to homogeneous and isotropic turbulence.
In the CBL, tetrads slow down their tendency to form elongated volumes, and rotate until their
longer axis lies parallel to the ground. We are not aware of measurements of pair separation PDF
and tetrad statistics in the three-dimensional atmospheric boundary layer turbulence, hence these
measurements will be compared to analogous results in homogeneous and isotropic turbulence, or
to laboratory experiments of Rayleigh-Bénard convection, when possible. A summary of the work
is in Sec. V.
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II. THE EULERIAN-LAGRANGIAN MODEL

A. The large-eddy simulation for the convective boundary layer

The convective boundary layer evolves according to the Navier-Stokes equations, with tem-
perature coupling via the Boussinesq approximation, and according to the continuity equation. The
temperature field is described by an advection-diffusion equation. The temporal evolution of the
velocity and potential temperature is achieved by means of the large-eddy simulation model exten-
sively described in Lanotte and Mazzitelli,33 that is based on the LES model of Moeng.43 The LES
code computes the velocity u, temperature θ , and pressure p on a computational grid, resolving
motions on scales larger than a filter scale �, which is of the order of the grid size. Fluctuations
of the fields on smaller (or sub-grid) scales are modeled in terms of their values on the resolved
scales, by applying the dynamic eddy-viscosity model proposed by Germano and co-workers.51 In
addition, the code integrates a model equation for the sub-grid scale kinetic energy e. For details
on the equations of motions, on their numerical integration, and on the SGS closures, we refer to
Moeng43 and to Lanotte and Mazzitelli.33

In the present work, the physical domain has dimensions Lx = Ly = 5000 m in the wind and
crosswind directions, and Lz = 2000 m in the vertical-gravity g-direction. The grid is composed
of 1283 mesh points, yielding a resolution �x = �y � 39 m and �z � 16 m. The boundary layer
is forced by the homogeneous, constant in time, surface temperature flux H0 = 0.24 K m/s and
by the constant geostrophic wind (Ugx , Ugy) = (3.5m/s, 0). The initial boundary layer height is z0i

∼ 1200 m, the inversion strength in the entrainment zone S = 0.05 K/m, and the free atmosphere
lapse rate �fa = 0.003 K/m.

The relevant parameters of the convective boundary layer are collected in Table I.

B. The Lagrangian simulation

The Lagrangian particle velocity is computed according to

v(x(t)) = u(x(t), t) + u′(x(t), t) , (2)

where u(x, t) is the LES resolved velocity, evaluated by a trilinear interpolation of the Eulerian
velocity field at the particle position x(t), and u′ is a sub-grid scale term, prescribed according to
the kinematic model detailed in Mazzitelli et al.46 The unresolved, fluctuating term u′ reflects the
location of the particle: close Lagrangian neighbours have spatially correlated velocity fluctuations.
In brief, a multiscale, homogeneous, and isotropic velocity field is associated with each particle;
the tracer field is such that neighbouring particles feel correlated velocities having Kolmogorov
like space-time scaling properties for the inertial range of 3D turbulent cascade.52 Hence, for the
relative dispersion statistics, a scaling behavior indicative of the inertial range of scales is obtained.46

Intermittency and non-Gaussian corrections are excluded. The Lagrangian sub-grid scale (LSGS)
model is suitable to assess single-point, two-point, as well as multi-point turbulent statistics in
homogeneous and isotropic turbulence.

The single particle velocity field has three independent components, and each of them is made up
of the superposition of Nm modes, defined on logarithmically equally spaced shells ln = L0/ρn with

TABLE I. Large-eddy simulation parameters. The symbols indicate: Li, i = x, y, z the dimensions of the physical domain;
U the intensity of the mean wind along x direction in the mixed layer; z0 the roughness length; zi the boundary layer height;
zi/L, with L the Obukhov length, the stability parameter; the convective velocity ω∗ = (gziH0/θ0)1/3, with H0 = 0.24 K m/s
the surface temperature flux and θ0 = 286.75 K a reference temperature; the convective time scale τ ∗ = zi/ω∗. Variables U,
zi, zi/L, ω∗ are temporal averages for 6 < t/τ ∗ < 11.5. Note that |zi/L| � 10 indicates a regime of strong convection. In a
CBL, zi, ω∗, and τ ∗ are the turbulent integral length, velocity, and time scales, respectively.

Lx, Ly Lz U z0 zi ω∗ τ ∗
(m) (m) (m s−1) (m) (m) zi/L (m/s) (s)

5000 2000 3.2 0.1 1240 −140 2.17 572
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FIG. 1. A comparison of the kinematic model particle energy (circles) with the sub-grid scale turbulent kinetic energy
computed by the LES. Time average is evaluated for 10 < t/τ ∗ < 11.5.

n = 0, . . . , Nm − 1 and with the mode ratio ρ chosen as ρ = 21/4. The corresponding wavenumbers,
velocities, and time-scales are

kn = 2π

ln
, un = A0 k−1/3

n , τn = ln

un
, (3)

with A0 = √
2CK ε1/3. The turbulent modes at scale ln decorrelate with the timescale τ n, according

to Ornstein-Uhlenbeck processes. In Eq. (3), ε is the mean kinetic energy dissipation, evaluated from
the LES Eulerian fields in the mixing layer. The constant CK is fixed by requiring that the sub-grid
scale kinetic energy of the tracers is locally equal to the horizontally averaged SGS turbulent kinetic
energy e(z) derived from the LES model.

The amplitude of the sub-grid scale velocity fluctuation, to be substituted into Eq. (2), is
modulated by the factor ε(z)/ε, with ε(z) the z-dependent (horizontally averaged) kinetic energy
dissipation. The modulating factor is updated during the numerical simulation every 200 time steps
(�τ ∗/2), since in a convective boundary layer only a quasi-steady state is obtained (note that the
mean temperature is always increasing as well as the boundary layer height). Such a procedure
offers two advantages: the first is to include in the LSGS kinematic model the dependence on the
coordinate z of the sub-grid Eulerian turbulent kinetic energy; the second is to account for the growth
in time of the turbulent zone (the mixed layer), due to the increase of the boundary layer height zi.
In Figure 1, the comparison of the vertical profile of the sub-grid scale kinetic energy from the LES
equation with that of the Lagrangian tracers shows a very good agreement between the Eulerian and
the Lagrangian measurements. Table II contains the parameters of the sub-grid scale models.

Tracer particles are introduced in the large-eddy simulation after about six large-scale eddy
turnover times have elapsed from the beginning of the run, when the system has reached a quasi-
stationary state and a mixed layer is developed.

TABLE II. Sub-grid scale models parameters. The symbols indicate: ε the space-time average of the kinetic energy dis-
sipation; CK the adimensional constant defining the sub-grid velocities amplitudes in the Lagrangian model (see text); Nm

the total number of LSGS modes in the particle model; L0 and lNm−1 the largest and smallest length scales in the LSGS,
respectively; τ 0 and τNm−1 the slowest and fastest LSGS time scales, respectively. Note that L0 = 2�x, where �x is the
horizontal grid spacing, and that the ratio of the simulation time step dt to the fastest time scale τNm−1 is dt/τNm−1 � 1/7.

ε L0 lNm−1 τ 0 τNm−1

(m2/s3) CK Nm (m) (m) (s) (s)

0.0027 0.6615 28 78 0.7 210 9.3
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FIG. 2. A projection of particle distribution within a single simulation (with N = 6656 tracers) onto the x − z plane, at time
steps t/τ ∗ = 0.3 (left), 0.6 (centre), and 1 (right). Particles in light shade colors lie within updrafts, while those in the dark
color lie within downdrafts. At time t = 0, all tracers are located on horizontal planes at about zs � 600 m, the corresponding
boundary layer height is zi � 1200 m.

Tracers are not constrained along the x and y directions, though their velocities are subject to
the periodic boundary conditions. Along the gravity direction, reflection boundary conditions are
imposed at the surface on both resolved and sub-grid velocities; whereas at the top of the boundary
layer, particles are free to penetrate within and above the inversion zone. However, such event is
very unlikely, owing to the weakness of turbulent agitation in the this stably stratified region.

With the setup described, Lagrangian tracking is performed for the tracers. Relative dispersion is
studied by seeding the flow with N = 6656 passive particles, released in pairs with initial separation
r0 ≤ 1 m. Pairs are initially distributed uniformly within an x elongated domain, of dimensions:
lx × ly × lz � 5000 m × 40 m × 32 m, placed at a distance zs/zi = 0.5 from the surface. Their initial
velocity equals that of the fluid at the particle position, plus the LSGS term.

Statistics are improved by ensemble averaging over 5 simulations that differ for the crosswind
location of the domains where particle pairs are initially distributed. The projection of those domains
onto the horizontal x − y plane results in 5 rectangles separated by a distance, along the y direction,
of 1 km from one another. The total number of pairs considered is therefore 16 640. In Fig. 2, a
projection on the vertical x − z plane of particle positions of a single run evolution is presented, at
times t/τ ∗ = 0.3, 0.6, and 1. From the snapshots, it appears that after about one large-scale eddy turn
over time, tracers are spread within the whole boundary layer.

We note that in the case of LES with a coarse resolution, where statistical isotropy is hardly
recovered at small scales, the present formulation of the LSGS model should be modified to include
shear effects.

III. PAIR DISPERSION STATISTICS

Consider a cloud of particles, released at time t = 0, that move within a homogeneous and
isotropic, incompressible velocity field, with Gaussian statistics and δ-correlated in time, such that
the two-point longitudinal correlator K (r, t) ≡ 〈[(u(x + r, t) − u(x, t)) · r̂]2〉 of the velocity field
behaves as a power-law of the separation distance, K(r) ∝ rξ , with 0 ≤ ξ < 2. The growth of the puff
can be quantified in terms of the probability density function p(r, t) at time t for the separation vector
r between two particles, chosen at random within the cloud. Upon the above hypothesis, the PDF
exactly satisfies a Fokker-Planck equation that in spherical coordinates in three-dimensions reads as

∂p(r, t)

∂t
= 1

r2

∂

∂r

(
r2 K (r )

∂p(r, t)

∂t

)
. (4)

When the initial separation is sufficiently small and the travel time sufficiently large, a spherically
symmetric solution of Eq. (4) exists (e.g., Monin and Yaglom,10 p. 574): for ξ = 4/3, it has the shape
given in Eq. (1).
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Richardson’s9 empirical proposal states that the scalar eddy-diffusivity follows the so-called
four-thirds law

K (r ) = k0ε
1/3r4/3,

where k0 is a dimensionless constant and ε the turbulent kinetic energy dissipation. By substituting
such expression for K(r), the large separation, long time solution of Eq. (4) is precisely

p(r, t) = Ar2

(k0ε1/3t)9/2
exp

(
− 9 r2/3

4 k0 ε1/3t

)
(5)

with A = (3/2)8/�(9/2). The second moment of this distribution is 〈r2(t)〉 = ∫ ∞
0 r2 p(r, t)dr ,

〈r2(t)〉 = gεt3 , (6)

and the dimensionless constant g = 1144 k3
0/81 is considered universal.20, 21

It is quite difficult to observe the scaling law (6) within DNS or laboratory experiments.8 Indeed,
as previously reported,21 the pure superdiffusive behavior of (6) can be contaminated by both small
and large scale cutoffs in the velocity field. Moreover, unless the initial separation r0 is chosen
very small, the scaling initially follows the so-called Batchelor regime, where the mean squared
separation grows ballistically. As a result of these effects, spurious or mixed scaling behavior are
observed, and a wide range of estimations of the constant g results. Alternatively, pair dispersion can
be studied by means of exit-time statistics, in terms of the so-called Finite-Size Lyapunov exponent
(FSLE).53–55 Given the trajectories x1(t) and x2(t) = x1(t) + r(t), FSLE is defined in terms of the
average time 〈Tγ (r)〉 it takes for the distance r = |r| to grow by a factor γ > 1 ,

λ(r ) = 1

〈Tγ (r )〉 ln γ . (7)

At small scale, r → 0, FSLE tends to the first characteristic Lyapunov exponent of the flow,55 i.e.,
λ(r) → λ. At larger scales, in the inertial range, where longitudinal Eulerian velocity fluctuations
behave as 〈[(δru)‖]2〉 � r2/3, the FSLE behaves as λ(r) � r−2/3. The FSLE reveals better the existence
of scaling laws, since it samples pairs with comparable separations, thus avoiding contaminations
from different regimes and limiting the impact of finite Reynolds effects.21, 58

In the following, we first discuss, in Sec. III A, statistical measurements of relative dispersion
obtained by fixing the time lag of observation, and then by fixing the spatial scale. In Sec. III B, we
discuss the statistics of relative velocities along tracers pair trajectories.

A. Particle relative separation statistics

In a turbulent atmospheric boundary layer, the inertial range typically goes from scales of a
few millimeters to scales of the order of 103 m. In the large-eddy simulations here presented, the
cutoff length scale is of the order of 2�x, so, with a resolution of 1283 grid points, the smallest
resolved inertial range scale is O(100 m). As a consequence the LES presents about one decade of
the Eulerian inertial range of spatial scales, and less for the Lagrangian inertial range of times, where
finite Reynolds effects are known to be more critical.56, 57 However, the Lagrangian sub-grid scale
model allows for an extension of the inertial range to much smaller time lags, down to τNm−1.

Before considering pair statistics, it is mandatory to test that diffusion properties are not affected
by the sub-grid model. To this aim, in Fig. 3, single particle diffusion is presented in terms of the
mean square displacement with respect to the initial position x(0),

D(t) = 〈(x(t) − x(0))2〉 . (8)

Results are shown for one set of large-eddy simulations, considering tracers trajectories obtained
with and without the sub-grid scale Lagrangian model. The initial regime increases ballistically as
t2, which is expected in the inertial range of scale, whereas at large times t � 2τ ∗ the Taylor diffusion
begins. As expected, the sub-grid Lagrangian model does not modify single particle diffusion
properties.
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FIG. 3. Absolute diffusion for a numerical simulation with (dashed green line) and without (continuous black line) sub-grid
scale Lagrangian model. The straight lines indicate, respectively, the ballistic D(t) ∝ t2 (dashed line) and linear diffusive
D(t) ∝ t (dashed dotted line) scalings.

On the other hand, particle relative dispersion is largely affected by the presence of the SGS
Lagrangian model. In Figure 4, a comparison is shown of relative dispersion second moment,

〈r2(t)〉 = 〈(x2(t) − x1(t))2〉 , (9)

due to the LES velocity field only, and due to the LES plus Lagrangian SGS velocities. In the
former case, pairs of tracers stay close to each other for about one large-scale eddy turn over time,
before entering a regime of rapid separation. In contrast, in simulations with the LSGS, pairs rapidly
forget their initial separation (Batchelor regime), and then separate super-diffusively with a scaling
behavior very close to t3.

To further analyze pair dispersion, we consider exit-time statistics. For this, we fix a set of
thresholds, rn = γ nr0, where γ > 1 and n = 1, 2, 3, . . . and then we measure the time, Tγ (rn), it
takes for the pair separation to change from rn to rn + 1. By averaging over the particle pairs ensemble,
we obtain the mean exit time, 〈Tγ (rn)〉, or mean doubling time if γ = 2. Figure 5 presents the inverse
of the mean exit-time or FSLE, λ(r), evaluated in numerical simulations with and without LSGS.
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FIG. 4. Relative dispersion for simulations with (dashed, green line) and without (continuous black line) Lagrangian sub-grid
scale model. The straight line indicates the Richardson regime, 〈r2(t)〉 ∝ t3.
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FIG. 5. Finite-size Lyapunov exponent for simulations with (squares) and without (circles) LSGS model. The straight line
indicates the curve αr−2/3, with α = 0.12 ± 0.01, fitting the data in the inertial range of scales.

The growing factor is chosen as γ = 1.25. In the case where no LSGS is present, the expected
Richardson scaling for the inertial range of turbulence λ(r) � r−2/3 starts only at scales of the order
of 2�x � 100 m, whereas at r < 100 m, the curve is flat: this is the signature of the lack of velocity
correlations at smaller scales. In the simulation with LSGS, a well defined scaling region is evident,
which extends down to scales O(1 m). We note that at separations of the order of the cutoff scale
r � 2�x, the two FSLE curves are coincident, meaning that the sub-grid scale model recovers
Lagrangian fluctuations of the resolved fields. Small discrepancies at larger separations are within
statistical errors. A fit of the curve of the FSLE can be used to estimate the Richardson constant g of
equation (6); indeed, following Boffetta and Sokolov,20 an analytic expression of the mean exit-time
can be derived from Richardson exit-time PDF, linking g with 〈Tγ 〉,20, 21

g = 143

81

(γ 2/3 − 1)3

γ 2

r2

ε 〈Tγ (r )〉3
. (10)

The value so obtained in our LES is g � 0.27 ± 0.07, that belongs to the range of values reported
in the literature [0.06 : 3.5], although it is smaller than the mostly agreed value g � 0.5 found in
three-dimensional HIT12, 20, 21 and also in neutral boundary layer turbulence.58 We stress however
that in a recent laboratory study of turbulent thermal convection the Richardson constant has been
found to be g ∼ 0.1.59 The evidence of a smaller value of the Richardson constant in turbulent
convection also comes from a numerical study that found g = 0.16, attributing such value to the
correlated motion of tracer pairs in thermal plumes.60 These results point to the anisotropy of the
pair dispersion process in convective turbulence.

To further analyze this observation, in Fig. 6 we present the decomposition of the total relative
dispersion (9) for pairs with initial separation r0 = lNm−1 � 0.7 m, into lateral and vertical compo-
nents. The lateral dispersion is evaluated on the projection of the particle separation vector onto the
horizontal planes, while the vertical one is evaluated with particle separation projected along the z
direction. These plots are to be compared with those in Figure 2 of Ref. 59, where it is suggested that
because of the vertical anisotropy, particle relative dispersion follows Richardson law if evaluated
in the wall parallel planes.

We remark that the convective boundary layer differs from laboratory convection in a Rayleigh-
Bénard cell, in that in the former case particles can penetrate within the entrainment zone at the top
of the mixed layer, whereas in the latter they are vertically confined in the idealised convective cell.
From Figure 6, it appears that on small time scales, the lateral and the vertical dispersion are similar,
and are both close to Richardson law. This can be understood as follows: the inertial range of scales
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FIG. 6. Log-log plot of the total particle relative dispersion (green dashed), lateral dispersion (red solid bold), and vertical
dispersion (solid black) for pairs whose initial separation is r (0) = lNm−1 � 0.7 m. The total relative dispersion (purple
dashed-dotted) is also plotted for pairs whose initial separation is of the order of the grid-size in the horizontal plane, i.e.,
r(0) = �x � 39 m. The straight line (black dashed-dotted) is the Richardson regime, � t3.

is partly influenced by the sub-grid model statistics which is isotropic; moreover, in atmospheric
flows, the inertial range is quite large, which allows for restoration of isotropy on the small scales.

We remark however that, on longer times yet belonging to the inertial range, as already found
in Ref. 59, we also observe that the total dispersion is dominated by the lateral one, while vertical
dispersion is strongly depleted. This is due to the vertical boundary constraints, making anisotropy
dominant at those scales.

It is also interesting to look at the behavior of the relative dispersion second moment, at varying
the initial separation of tracer pairs. Figure 6 contains the curve 〈r2(t)〉, for pairs whose initial
separation is of the order of the grid size, r ′

0 = �x � 39 m. Here, the LSGS scales play no role
and an inertial range scaling is hardly present. At very large times, total relative dispersion curves
coincide.

We now examine the statistical behavior of the separation probability density function p(r, t).
Results are shown in Figure 7, by plotting pair separation PDF evaluated at different times t. The
time dependence is rescaled in terms of the second order moment, as done in Eq. (1). From time lags
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FIG. 7. Lin-log plot of the pair separation probability density function p(r, t) at different times. Time dependency is rescaled
in terms of the second order moment 〈r2(t)〉. The straight line is Richardson’s theoretical expectation.
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FIG. 8. Skewness (left) and kurtosis (right) of the particle separation distance, for pairs with initial separation r0 = lNm−1.
The straight lines indicate the following values of the skewness: 1.7 (Richardson value) and 0.49 (chi-squared value). The
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much smaller than the large-eddy turnover time τ ∗ until times t ∼ O(τ ∗), the pair separation PDF can
be fitted by Richardson solution over a wide interval of spatial scales. Within the present statistics,
comparable with those of recent experiments of HIT,16 we can say that Richardson prediction for
the pair separation PDF is well verified in CBL turbulence.

Additional analysis of the particle separation statistics is carried out by computing the skewness
Sr (t) = 〈[r (t) − 〈r (t)〉]3〉/[σ 2

r (t)]3/2 and the kurtosis Kr (t) = 〈[r (t) − 〈r (t)〉]4〉/[σ 2
r (t)]2.

On a theoretical ground, the very existence of Eulerian intermittency tells us that pair dispersion
cannot be described by a Fokker-Planck diffusive approach such as that of Eq. (4), which assumes
temporal self-similarity in the dispersion process.

According to Richardson’s model, the expected values in the inertial range for the skewness
and the kurtosis are, respectively, 1.7 and 7.81. At larger scales, by assuming for r2(t) a chi-squared
distribution with three degrees of freedom, these numbers should become 0.49 and 3.1. In Fig. 8,
we compare theoretical expectations with results obtained in the LES runs with the use of the LSGS
model. As reported in literature (see, e.g., Yeung and Borgas61 and Biferale et al.21), the lack of a
scaling regime where Sr(t) and Kr(t) are the fingerprint of the intermittent behavior of Lagrangian
pair dispersion statistics. Here, we found that the deviations from Richardson’s9 expectations of the
separation skewness and kurtosis at small time lags are much smaller than those observed in DNS
or experiments: this comes as no surprise, since intermittent small-scale fluctuations of the velocity
field are not present in the LSGS model. The small but detectable deviations that we observe are due
to the interplay in the inertial range statistics of the LSGS velocities with the resolved ones.

Finally, the fact that they do not level off at the Richardson’s9 expectation values suggests
contamination of the inertial range from the integral as well as from the small scales.

Before concluding this section, we present the temporal behavior of the maximum pair separation
distance in Figure 9. Such quantity is evidently related to the maximum width reached by a small puff
of a passive tracer released inside the mixed layer. The numerical evidence from the LES experiments
is that the initial growth of the puff follows the power law r2

max ∝ tγ1 , with γ 1 = 3. Such behavior is
limited to small times, when the puff dimension has not reached the boundary layer height zi yet, and
reproduces the behavior of the separation second moment 〈r2〉, thus exhibiting no anomalous effect.
At larger times lags, still within the inertial range of time lags, the maximal separation grows slowly,
and behaves as r2

max ∝ tγ1 , with γ 2 = 2. Recently, in Ref. 27 by means of DNS of homogeneous and
isotropic turbulence, a similar quantity was measured, obtaining the behavior rc(t) � t. We attribute
the observed difference to the fact that at small time lags, the Lagrangian statistics is in our case
not affected by intermittent effects. Being an issue of possible practical interest, it would be very
interesting to have an analytical derivation as well as measurements of this quantity from boundary
layer experiments or direct numerical simulation of thermal convection. This is left for future
work.
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B. Particle relative velocity statistics

The relative velocity of each tracer pair vr ≡ v2(x2(t)) − v1(x1(t)) is decomposed into its parallel
(along separation direction) and normal components, according to

vr = vp r̂ + vn. (11)

Here, r̂ is the unit vector in the direction of the separation, r = x2(t) − x1(t), vp is the modulus of
the parallel velocity component, and the vector vn is the normal velocity component

vp = vr · r̂, (12)

vn = vr − vp r̂. (13)

The probability density functions of vp and of one component of vn are measured and plotted in
Fig. 10, together with a reference Gaussian function. The figure shows that the p(vp, t) is positively
skewed, indicating that nearby particles are more likely to be diverging than converging at all times.
The skewness decreases in time as the particle-pair PDF tends to the Gaussian function at large
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FIG. 10. The probability density functions of the parallel relative velocity component vp (left) and one normal relative
velocity component vn (right), measured at different time lags, for pairs with initial separation r0 = lNm−1. For comparison,
a Gaussian function (red) is also plotted. For the symbols, see table in Figure 7.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.204.60.87 On: Wed, 28 May 2014 08:14:57



055110-12 Mazzitelli et al. Phys. Fluids 26, 055110 (2014)

times. In agreement with the small time lags isotropic statistics, p(vn,z, t) (z-component of vn) is
symmetric, denoting that there is no preferred orientation of rotation around the separation axis.
From both figures, important deviations from a normal behavior are observable, in agreement with
similar results in DNS and experiments of homogeneous and isotropic turbulence.

IV. MULTI-PARTICLE STATISTICS: THE DISPERSION OF TETRAHEDRA

We consider tracer particles that are initially located at the four points of regular tetrahedra of
side d � 0.15 m, which implies that the side is smaller than the smallest length scale of the particle
sub-grid velocity, d < lNm−1. The centre of mass of the tetrahedra are randomly distributed on the
horizontal plane located at z/zi = 0.5. Three simulations, equally spaced in time by about one large
eddy-turnover-time τ ∗, are carried out. Each simulation contains 4096 tetrads.

In order to display the tetrad shape evolution, the following change of coordinates is performed
from the particle positions xi, i = 1, . . . , 4 to the set ρ i, i = 0, . . . , 3, defined as: ρ0 = (x1 + x2 + x3

+ x4)/2, ρ1 = (x1 − x2)/
√

2, ρ2 = (2x3 − x2 − x1)/
√

6, ρ3 = (3x4 − x3 − x2 − x1)/
√

12.47 Owing
to the homogeneity of the SGS velocity field and to the fact that tetrads initial distribution is on the
plane z/zi = 0.5 (that belongs to the homogeneous and isotropic region of the CBL), we expect that
the statistics do not depend on the centre of mass ρ0, at least for times t ≤ τ ∗. Therefore, we can
repeat the analysis of tetrad statistics on the same path proposed for homogeneous and isotropic
flows.22, 48, 49 We define the square symmetric inertia matrix I = ρρT , with column vectors ρi , i
= 1, 2, 3. The matrix admits real positive eigenvalues, gi, that can be ordered according to: g1 ≥
g2 ≥ g3. The tetrahedron dimension is given by r2 = 2

3 tr (I) = 2
3 (g1 + g2 + g3) and the volume is

V = 1
3

√
det(I) = 1

3

√
g1g2g3. We also introduce the adimensional quantities Ii = gi/r2 (where I1 +

I2 + I3 = 1). For a regular tetrahedron, we should have I1 = I2 = I3 = 1/3. If the four points are
coplanar, the third index is null, I3 = 0; while when the four points are aligned, both the second and
third indices vanish, I2 = I3 = 0.

In Figure 11 (left plot), we present the temporal evolution of the mean eigenvalues of I, together
with the Richardson’s prediction for the inertial range of separations, 〈gi〉 ∝ t3. We observe a nice
agreement between the theory and the numerical results, due to the role of the LSGS.

As previously done for relative dispersion, we also assess fixed scale statistics to better disentan-
gle scaling regimes. To this aim, we compute the average time 〈Tα(gi)〉 it takes for each eigenvalue
gi to increase its value of a factor α > 1. On a dimensional ground, in agreement with Richardson’s
theory, we expect

〈Tα(gi )〉 ∝ g1/3
i . (14)
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FIG. 11. (Left) The temporal behavior of the mean eigenvalues 〈gi〉, with i = 1 (red-solid line) i = 2 (green dashed line), and
i = 3 (blue dotted-dashed line). The continuous line is Richardson’s expectation for the inertial range of scales. (Right) The
exit-time measurements for the eigenvalues gi. The dimensional expectation on the basis of the Richardson scaling regime is
also shown for comparison (straight line).
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within the interval t/τ ∗ ∈ [0.03: 0.4]. Here, 〈I1〉 = 0.863 ± 0.007, 〈I2〉 = 0.125 ± 0.003, and 〈I3〉 = 0.0118 ± 0.0008.

Results are plotted in Figure 11 (right plot), for the choice α = 1.4. The observed behavior of the
exit-time does not match exactly the theoretical prediction. Nevertheless, an inertial range can be
identified where the slope of the curves is close to the Richardson expectation.

In Figure 12, the adimensional parameters 〈Ii〉s are computed by selecting, at each time step,
those tetrads where interparticle distances belong to the inertial range of scales. This is done on
the basis of the exit-time measurements reported in Figure 11 (right plot) and corresponds to
tetrads whose eigenvalues gis are in the intervals 5 × 10−7 < g1/z2

i < 0.1, 10−7 < g2/z2
i < 0.01,

and 3 × 10−7 < g3/z2
i < 0.03.

The best fit to the curves of Fig. 12, within the interval t/τ ∗ ∈ [0.03 : 0.4], are 〈I1〉 = 0.863
± 0.007, 〈I2〉 = 0.125 ± 0.003, and 〈I3〉 = 0.0118 ± 0.0008, i.e., 〈I1〉 � 〈I2〉, 〈I3〉. This indicates
the dominance of very elongated tetrad structures. We remark that our results are consistent, within
errorbars, with previous findings concerning homogeneous and isotropic turbulence, in Richardson-
like model for tetrads dispersion,50 where 〈I1〉 = 0.861, 〈I2〉 = 0.128, and 〈I3〉 = 0.011, and
they also agree with direct numerical simulations48 results, where 〈I1〉 = 0.854, 〈I2〉 = 0.135, and
〈I3〉 = 0.011.

The existence of a region where the tetrads are strongly stretched in one direction can be
evidenced by computing the ratio 〈v2

p〉/〈v2
n〉, where the parallel, vp, and transversal, vn , rela-

tive velocities, defined according to Eqs. (12) and (13), are the mean values over the 6 indepen-
dent particle pairs of each tetrahedron. The brackets 〈 · 〉 indicate an average over all tetrahedra.
Fig. 13 shows that for t/τ ∗ ≤ 1 the ratio is larger than one, indicating that separation between
particles dominates over rotation. The maximum is achieved at t/τ ∗ � 0.03, followed by a slight
descent. A steeper descent begins at t/τ ∗ � 0.3 − 0.4. Two possibilities are here explored in order
to shed light on the transition point between these two distinct regimes.

First, it may be attributed to inhomogeneous effects due to particles’ collective motion towards
the bottom zone of the boundary layer, that is shown in Fig. 14, where the distribution of the tetrad
centres of mass is plotted as a function of the vertical coordinate z and of time t. From the plot we
infer that, at time t/τ ∗ ∼ 0.4, a large number of tetrads has already moved close to the ground, where
boundary effects prevail.

However, by selecting those tetrads whose centre of mass remains, at all times, in the region
z/zi ∈ [0.4 : 0.6], we do not observe different behaviors. This indicates that the anisotropies are more
likely connected with the mixed layer structures, rather than with the bottom boundary constraints.
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Second, we consider the influence of the sub-grid scale model by computing the ratio of the
largest model time scale τ 0 (see Table II) to the LES convective time τ ∗ (see Table I), that is, τ 0/τ ∗
� 0.36. Whether the kinematic model is dominant or not is investigated by looking at the relative
contributions to the particle velocity difference resulting from the LES and from the sub-grid model.
Figure 15 shows that, up to times t/τ ∗ ∼ 0.2, the main contribution comes from the sub-grid scale
model. At later times, the resolved component becomes more important.

To summarise, the transition between the different regimes in tetrad shape evolution can be
attributed to the presence of BL structures, i.e., the plumes, leading to deviations from analogous
results in HIT and from Richardson scaling. In the CBL, we measure the presence of less elongated
but flatter structures.

For completeness, we remark that the time scale τ 0 is calculated through the largest model
length, L0, the fluid energy dissipation, ε, and the model constant CK, all parameters dependent on
the large-eddy simulation of the CBL. By changing the large-eddy simulation resolution, we do not
expect to measure large deviations from the present case. The qualitative trend will be the same, i.e.,
an homogeneous and isotropic turbulent-like regime followed by an anisotropic plume-dominated
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FIG. 14. Distribution of the tetrads as a function of the normalized surface distance z/zi and of time t/τ ∗. We plot the fraction
of tetrads, with respect to the total number, whose centre of mass is located at time (t) at height (z).
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situation, separated by a cutoff time scale tc/τ ∗ ∼ O(10−1). The quantitative analysis of tc is left for
future studies.

Finally, we comment on the orientation of the tetrahedra within the CBL by looking at the
direction of the eigenvectors of the inertia matrix I. We measure that, for t/τ ∗ ≤ 0.4, the tetrads
do not display any preferential orientation; at larger times, the eigenvector relative to the largest
eigenvalue I1 rotates until lying in the horizontal plane (not shown). This may be easily justified
by considering that the boundary constraints on the particles allow for stretching of the tetrahedron
only on this plane.

V. CONCLUSIONS

We carried out a set of large-eddy numerical simulations of a turbulent convective boundary
layer, seeded with thousands of tracer particles. The Lagrangian statistics of turbulence are investi-
gated by the time evolution of particle pairs and tetrads. The velocity fluctuations at small scales are
modelled for both the continuous Eulerian phase and for the Lagrangian particles. The Lagrangian
particle sub-grid model does not modify LES results concerning single particle dispersion. On the
other hand, particle relative dispersion is completely reshaped by the LSGS model. In simulations
without the Lagrangian sub-grid scale model, particles within a pair stay together for quite a long
time, before entering a regime of rapid separation. In simulations with LSGS, the tracer pairs imme-
diately start to separate and relative dispersion reaches a scaling behavior close to the Richardson
scaling regime � t3.

In agreement with recent numerical and laboratory experiments of turbulent thermal convection,
we observe a reduced value of the Richardson constant g, in comparison to homogeneous and
isotropic turbulence. We explain this result as a consequence of the anisotropy induced by the tracer
motions in the thermal plumes.

We examined pair and tetrad separation statistics looking at the behavior at fixed scales also.
This was done in order to enforce the statement of an extended Richardson regime, thanks to the
Lagrangian sub-grid model.

The relative velocity of particle pairs is decomposed into its parallel vp (along separation
direction) and normal vn components. The probability density function p(vp, t) is positively skewed,
pointing out that nearby particles are more likely to be diverging than converging at all times. The
skewness decreases in time and particles velocity distribution tends to a Gaussian function at large
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times. The distribution p(vn, t) is symmetric, denoting no preferred direction of vn . The result is
consistent with isotropy of turbulence on the inertial scales.

The statistics of tetrads – computed for the first time in the atmospheric boundary layer – show
the dominance of very elongated structures. Here also, the Lagrangian sub-grid scale model plays a
key role, enabling the observation of an extended inertial range scaling regime.

A time dependent transition occurs making a sharp difference between two distinct regimes:
an homogeneous and isotropic turbulence-like regime and an anisotropic, plume-dominated one.
The anisotropies are more likely connected with the mixed layer structures, rather than with the
bottom boundary constraints. The transition between different regimes can also be attributed to
the different features presented by the LES velocity field with respect to the sub-grid scale ho-
mogeneous and isotropic one. Indeed, the presence of boundary-layer structures, i.e., the plumes,
leads to deviations from Richardson scaling and to the observation of less elongated but flatter
structures.

The results presented in this work on pair and multiparticle dispersion are expected to be
observed, within the limitations of the numerical model, in all highly convective boundary lay-
ers, characterised by a well extended mixed layer region and the presence of strong thermal
structures.
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