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The behaviour of the second-order Lagrangian structure functions on state-of-the-art
numerical data both in two and three dimensions is studied. On the basis of a phe-
nomenological connection between Eulerian space-fluctuations and the Lagrangian
time-fluctuations, it is possible to rephrase the Kolmogorov 4/5-law into a relation
predicting the linear (in time) scaling for the second-order Lagrangian structure func-
tion. When such a function is directly observed on current experimental or numerical
data, it does not clearly display a scaling regime. A parameterisation of the Lagrangian
structure functions based on Batchelor model is introduced and tested on data for 3d
turbulence, and for 2d turbulence in the inverse cascade regime. Such parameterisa-
tion supports the idea, previously suggested, that both Eulerian and Lagrangian data
are consistent with a linear scaling plus finite-Reynolds number effects affecting the
small- and large timescales. When large-time saturation effects are properly accounted
for, compensated plots show a detectable plateau already at the available Reynolds
number. Furthermore, this parameterisation allows us to make quantitative predictions
on the Reynolds number value for which Lagrangian structure functions are expected
to display a scaling region. Finally, we show that this is also sufficient to predict the
anomalous dependency of the normalised root mean squared acceleration as a function
of the Reynolds number, without fitting parameters.

Keywords: isotropic turbulence; homogeneous turbulence; direct numerical simulation;
two-dimensional turbulence

1. Introduction

The knowledge of the statistical properties of turbulence, and in particular its non-Gaussian
statistics, is a key open problem in classical physics with important consequences for
applications [1]. The description of a fluid flow can be equally done in the Eulerian frame,
where the velocity field at any position and time is known, u(x, t), or in the Lagrangian
frame where the evolution of fluid tracers, x(t), is followed in time, v(t) = u(x(t), t) and
v(t) = ẋ(t). Although the two descriptions are mathematically equivalent, the second bears
premises to better shed light into the dynamics of (small) particles dispersed and transported
by turbulent flows [2,3].

∗Corresponding author. Email: a.lanotte@isac.cnr.it
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One of very few exact results known for three-dimensional homogeneous and isotropic
turbulence is the Kolmogorov 4/5-law for inertial range of scales; for d-dimensional flows
with d = 2, 3, it reads as

S3(r) = 〈[(u(x + r) − u(x)) · r̂]3〉 = − 12

d(d + 2)
εr, (1)

where longitudinal velocity increments are considered.
This relation connects velocity differences at scale r with the presence of a non-

vanishing energy flux, ε. In the 3d direct cascade, the energy flux remains constant and
positive at increasing the Reynolds number, giving rise to the dissipative anomaly of
turbulence [1]. The translation of Equation (1) to the Lagrangian domain has been suggested
long time back [4,5], but it only relies on phenomenological bases. It connects Eulerian
fluctuations at separation r, δru = u(x + r) − u(x), with Lagrangian temporal velocity
difference over a time interval τ , δτ v = v(t + τ ) − v(t), where space and time are connected
through the local eddy turnover time:

δτ v ∼ δru, τ ∼ r/δru. (2)

Here due to the dimensional and phenomenological nature of the relation, all geomet-
rical and vectorial properties are neglected. Moreover, it is important to stress that the
symbol ∼ in Equation (2) is meant as scale-as in a pure statistical sense and not as a
deterministic constraint holding point-by-point, as sometimes suggested [6]. It results that
the phenomenological equivalent of the exact law (1) in the Lagrangian domain reads

S2(τ ) ≡ 〈(δτ v)2〉 ∼ ετ, (3)

where the prefactor cannot be exactly controlled. Another important difference with respect
to (1) is that the sign of the right-hand side is also fixed, implying that (3) cannot be exact
in principle because of the energy flux differently sign-defined in 2d and in 3d turbulence.

This relation is intimately connected with the picture of the Richardson cascade, built
in terms of a superposition of eddies at different scales and with different characteristic
times (eddy turn over times). The idea is to imagine that Lagrangian fluctuations, δτ v, at
a given timescale, τ , are dominated by those Eulerian eddies, δru, which have a typical
decorrelation time (2) of the order of the time lag, τ . Indeed eddies at smaller scales are
much less intense, i.e. if r ′ 	 r , then δr ′u 	 δru, while eddies at larger scales do not
contribute to Lagrangian fluctuations being almost frozen on the time lag, τ . The bridge
relation (2) must be considered the zero-th order approximation connecting Lagrangian
and Eulerian domains. It cannot be exact and it cannot be applied straightforwardly to all
hydrodynamical systems, being strongly based on the hypotheses of locality of the energy
transfer process and on the existence of a unique typical eddy turn over time at each scale.
Therefore, it is not expected that it can straightforwardly explain Lagrangian–Eulerian
correlations in conducting flows, as investigated in [7].

In considering the application of the bridge relation for Lagrangian scaling in 2d and
3d hydrodynamical turbulence, the situation is not at all yet clear. On the one hand, it
has been successfully used to predict the probability density function of accelerations and
the relative scaling between Lagrangian structure functions [8–11]. On the other hand,
when looking at direct scaling versus the time lag, inconclusive results have been obtained
[12–14]. As a consequence, different scaling behaviours have been proposed to overcome
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36 A.S. Lanotte et al.

doubts raised due to the consistently poorer quality of the validation from both numerical
and experimental tests [15,16], when compared to the Eulerian counterpart. Moreover, by
means of a stochastic model, it has been argued that the observed reduced scale separation
in the Lagrangian frame is the main reason for the departure from Kolmogorov scaling
in data [17], and that the inertial sub-range linear scaling is eventually reached only at
Reynolds numbers beyond Reλ = 30,000 [18].

Note that acceleration probability and relative scaling of Lagrangian structures functions
are a probe of intermittent fluctuations over time lags τ , which can be assessed independently
of the scaling of the second-order moment S2(τ ). However, this deserves a particular interest
since it is a key ingredient of Lagrangian stochastic models for turbulent diffusion and
dispersion [3,19–21].

In this manuscript, we specifically address the issue of poor inertial range scaling of
S2(τ ), basing our analysis on currently available numerical data. Our analysis points in the
direction of an enhanced sensitivity to finite-Re corrections in the Lagrangian framework
with respect to the Eulerian one. We show that a simple modelling of finite-Reynolds number
effect, affecting the small and the large scales, can be enough to interpret present data on the
basis of the bridge relation (2). This result confirms two things. First, that the dimensional
Kolmogorov-like argument of (2), even if not supported by any exact theoretical statement,
represents a very good first start to guess the statistical connections between Eulerian and
Lagrangian statistics. Second, that any possible new physics beyond the relation (2) is to be
compared with more refined data at higher Reynolds numbers.

We remark that on the basis of the refined similarity approach [22,23], no intermittency
correction of the second-order structure function is expected. Alternatively, in [15], a small
modification of the linear scaling for the second-order structure function has been proposed
on the basis of the observed behaviour of the acceleration spectrum. While further data are
needed to definitely discriminate between anomalous scaling or finite-Reynolds number
effects in the second-order moment, we point out that the simple parameterisation here
proposed gives very good results without invoking any intermittent correction. Finally, we
stress that recently, by using Hilbert–Huang transform, further evidences for a linear scaling
of second-order Lagrangian moment have been presented [24].

2. Batchelor parameterisation for the Lagrangian second-order structure function

We consider the second-order moment of velocity increments measured along tracer
trajectories in statistically stationary, isotropic and homogeneous (HIT) 3d dimensional
turbulence:

S2(τ ) ≡ 〈[vi(t + τ ) − vi(t)]
2〉, (4)

where vi(t) is one component of the turbulent Lagrangian velocity field. As mentioned,
the Kolmogorov scaling for the Eulerian velocity increments once translated into the time
domain via the bridge relation gives – for any velocity component – the linear prediction
S2(τ ) = C0 ετ, where C0 is a dimensionless constant of order unity. Observations [25]
suggest that in 3d HIT, C0 ∈ [6–7]; however, since even at the largest Reynolds number
achieved, both experimental and numerical data do not show a well-developed scaling
range in S2(τ ), the value of C0 measured displays a weak yet detectable Re dependence
[14–16,18,25,26].

The point that we address here is to understand if this poor scaling reflects a real
deviation from the linear scaling of Lagrangian turbulence, or if it is just the result of
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finite-Reynolds numbers effects, coming from both ultraviolet and infrared cut-offs. In the
latter case, one could expect that future DNS and experiments might be able to directly
display scaling properties also in the Lagrangian domain, including intermittency. In fact,
at the moment current practice is analysing intermittency in the Lagrangian domain only
by using Extended Self-Similarity approach [10,11], hence bypassing the need for well
defined power-law behaviour in the inertial range.

In order to understand the above issue, it is mandatory to have a control on the effects
of viscous and integral scales on the supposed inertial range. Due to the lack of control on
the analytical side, one possible way is to resort to phenomenological models [10,17,27],
trying to reproduce the behaviour of the velocity increments over the entire range of
scale/frequency. In particular, according to studies over the last few decades [10,11,27–29],
a parameterisation proposed by Batchelor became quite popular because of its simplicity
and capability to include non-trivial viscous-effects (such as the intermittency of velocity
gradients and acceleration) [10,27], as well as the saturation effects observed at the large
scales [11,28,29].

In the following, we test the possibility to get a suitable Batchelor-like parameterisation
able to capture the poor scaling behaviour observed on the data. The anticipated success of
this goal implies two facts. First, it shows that the absence of a genuine scaling observed
at moderate Reynolds numbers is not in contradiction with the possibility to have scaling
at higher Reynolds numbers. Second, it gives a first hint on how far in Reynolds number
one needs to go before expecting an observable scaling behaviour. Of course, the Batchelor
parameterisation is not based on any analytical result and finds a justification only on its
ability to reproduce data. Other parameterisations are very much possible as well, and
whether the Batchelor one will agree or not with data at higher Reynolds numbers is an
open question for the future.

On a dimensional ground, a parameterisation for the time behaviour of S2(τ ) has to
reproduce the three following regimes:

⎧⎪⎨
⎪⎩

S2(τ ) ∼ ε τ 2/τη τ 	 τη,

S2(τ ) ∼ ε τ (τ/TL)z2−1 τη 	 τ 	 TL,

S2(τ ) ∼ ε TL τ � TL,

(5)

where τη is the Kolmogorov timescale and TL is the large-scale Lagrangian eddy turnover
time. If we assume a Kolmogorov scaling in the temporal inertial range then z2 = 1,
otherwise it can be kept as a free parameter (see also Sec. 3). We recall that by dimensional
arguments we have TL/τη ∝ Reλ. A functional form which interpolates between the above
behaviours is simply obtained as [27–29]

S2(τ ) = C0 ε
τ 2

(
c1 τ 2

η + τ 2
) (2−z2)

2

(1 + c3τ/TL)−z2 , (6)

where c1 and c3 are order one dimensionless constants.
In Figure 1, we show the results for the linearly compensated second-order moment,

when we take TL/τη = 0.1Reλ [25]. It turns out that the effect of finite-Reynolds number
induced by the large-scale saturation are big, since a plateau develops only for very large
Reynolds numbers currently unreachable. In the inset, we zoom in the scaling region:
starting for Reynolds number Reλ = 5000, a scaling shows up.
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38 A.S. Lanotte et al.

Figure 1. The linearly compensated second-order Lagrangian structure function as obtained
with the Batchelor parameterisation (6), for different Reλ. Starting from bottom curve, they
refer to structure functions at the following values of Taylor-scale based Reynolds numbers
Re = 100; 300; 600; 1000; 5000 and Reλ = 10,000. The inertial range scaling exponent is fixed
to z2 = 1. Inset: a zoom in the scaling region to highlight a plateau starting to develop already at
Reλ = 5000.

One can of course play with the parameterisation in order to modify the transitions
from viscous to inertial, and from inertial to integral ranges. In particular, by changing
the functional form of the denominator in Equation (6) and of the saturation factor, these
transitions can be made sharper or smoother [10].

We also note that in order to be consistent with an exponential decay for the velocity
correlation function, one can possibly slightly refine the functional form of the saturation
factor for large times (see below). It is thus probable that the observed absence of a clear
and well-developed plateau in numerical and experimental data is just a finite-Reynolds
number effect that, as we mentioned, are more pronounced in the Lagrangian statistics than
in the Eulerian case (dimensionally, L/η ∝ Re

3/2
λ and TL/τη ∝ Re1/2).

In Figure 2, we present an analysis of DNS data of 3d HIT at Reλ = 180, 280, 400, 600
(see [11,30,31]). In particular, we compare the linearly compensated second-order La-
grangian structure functions at the four Reynolds numbers (left panel), with curves obtained
according to Equation (6). As one can see the fit is very good. Moreover, in the same figure
we also show, to guide the eyes, the result of the Batchelor parameterisation for a much
higher Reynolds number (Reλ = 5000).

It is well known that time correlations along tracer trajectories decay very slowly. Hence,
when considering the second-order Lagrangian structure function, there is the issue of the
long time decaying of the velocity correlation functions. Here, we compare the power-law
saturation factor ∝ (1 + τ/TL)−z2 appearing in Equation (6), with an exponential saturation
factor ruling the large times behaviour. We used the following interpolation:

S∗
2 (τ ) = C0 ε TL

τ(
c1τ 2

η + τ 2
)1/2

(1 − exp(−c3τ/TL)), (7)

where in comparison to expression (6), we have fixed the exponent z2 = 1 and C0, c1

and c3 are free parameters. In the right panel of Figure 2, we compare the results of the
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Figure 2. (Left panel) DNS of 3d HIT at Reλ ∼ 180, 280, 400, 600 [11,30,31]. S2(τ ) compensated
with ετ versus the Batchelor fit (solid lines) with a power-law large-scale saturation term. (Right panel)
Same DNS data of HIT at three different Reynolds numbers, compensated such as to highlight inertial
range behaviour according to the two Batchelor parameterisations (with large times exponential or
power-law behaviour, see Equation (8)). Fitting parameters are: c1 = 2.2 in the power-law and c1 = 2.5
in the exponential form; c3 = 1.0 in the power-law expression, while c3 = 1.5 in the exponential
expression; in all cases C0 = 6. Error bars are estimated from the anisotropy of velocity components
at large scales. (Inset of right panel) same curves as in the body, to highlight large scale behaviour.
Error bars have been omitted for clarity.

two different functional forms for large timescales. In order to do it properly, we plot the
second-order structure function compensated with its whole inertial and integral timescale
regime, that is,

S2(τ )

(τ (1 + c3τ/TL)−1)
;

S∗
2 (τ )

(τ (1 − exp(−c3τ/TL)))
, (8)

though the power-law and exponential forms are very close. Here clearly it is important to
consider that at large scales we expect to have quite large statistical and systematic error
bars, due to anisotropy and/or finite-size effects (see error bars in the right panel of Figure 2).
Moreover, large scale fluctuations are not expected to be universal. It is interesting to note
that once the large-scale contamination is removed, compensated data start to show a well-
defined plateau already at moderate Reynolds numbers, independently of the functional
form for the large-scale behaviour.

Scaling relations have to be consistent with kinematic constraints of – statistically
stationary and isotropic – turbulence. One of such is that the time integral of the acceleration
autocorrelation function is zero [32,33] ,

∫ ∞

0
Ra(τ )dτ =

∫ ∞

0
〈ai(τ )ai(0)〉dτ = 0. (9)

Hence, the acceleration autocorrelation, which is positive at small time lags, should then
be negative to match the kinematic constraint.

Provided a linear leading scaling is prescribed in the Lagrangian second-order structure
function, the acceleration autocorrelation function is further constrained to be zero in
the inertial range of scales [33]. In Figure 3, we plot the behaviour of the acceleration
covariance obtained from the Batchelor parameterisation of the Lagrangian second-order
structure function, which shows consistency vanishing behaviour in the scaling range. These
findings are valid as possible working hypothesis, until as suggested in [33] and [15], a
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40 A.S. Lanotte et al.

Figure 3. The temporal behaviour of acceleration autocorrelation function Ra(τ ) = 〈a(τ )a(0)〉 de-
rived from the Batchelor parameterisation of the Lagrangian second-order structure function, with
exponential large-scale saturation, see Equation (7). Parameters are the same used for Figure 2. In the
inset, a zoom in the negative region of the autocorrelation function.

precise form of the acceleration autocorrelation is known both in the dissipative and inertial
sub-ranges for finite-Reynolds number 3d turbulence.

Hence, at least for 3d turbulence, we summarise these indications as follows: (i) the
absence of a plateau can be related to the presence of strong large-scale and small-scale
effects, competing with the inertial range behaviour; (ii) as it appears from the left and the
right panels of Figure 2, the Lagrangian inertial range does not coincide with the plateau
region, where the second-order structure function linearly compensated shows a peak, since
the large-scale contamination is still present.

3. Intermittency corrections

It is well known that Lagrangian statistics in 3d is affected by intermittent corrections.
In particular, acceleration statistics does not obey dimensional scaling: the normalised
acceleration rms, 〈a2〉τη/ε is observed to have a weak anomalous dependency on Reλ:

a2
rms = 〈a2〉 ∼ a0

ε

τη

Re
γ
λ , (10)

with γ ∼ 0.2 (see also Figure 4). Similarly, the probability density function of the nor-
malised acceleration P (a/arms) possesses strong non-Gaussian and Reynolds-dependent
tails [8]. It is remarkable that such intermittent corrections can be explained by invoking
again the bridge relation previously discussed: so doing, it is possible to predict Lagrangian
intermittent properties once the Eulerian ones are given, and viceversa [5,8,10,11,30].
In Figure (4), we report the compilation of data sets at different Reynolds numbers for
the root-mean-square acceleration (10). On these data three curves are superposed: (1) a
phenomenological fit proposed in [34], and the predictions obtained by using the bridge
relation (2) with two different multi-fractal estimates of the Eulerian statistics, based on
the longitudinal and on the transverse spatial increments [11]. The numerical data fall well
within the two multi-fractal predictions, confirming the ability of the bridge relation to
reproduce Lagrangian properties without any additional free parameter. We notice that the
bridge relation still predicts that (3) holds true, i.e. intermittency is absent for third-order
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Figure 4. Collection of different numerical data of the scaling of normalised root-mean-square
acceleration as a function of the Taylor-scale based Reynolds number Reλ. Two lines correspond to
the multi-fractal prediction using the bridge relation for transverse increments (MF TRASV) leading
to γ = 0.17, or the bridge relation for longitudinal increments (MF LONG) leading to γ = 0.28
(see [10] for details). These lines can be shifted up or down arbitrarily, being the multi-fractal
prediction valid scaling-wise and not for the prefactors. A third line is a fit proposed by Hill in [34],
as a superposition of two power laws of exponents γ1 = 0.25 and γ2 = 0.11. Data are taken from
Refs. [11,30,31,35–37]. Error bars are estimated considering a typical 10% uncertainty in the energy
dissipation rate.

quantities in the Eulerian domain and hence for second-order quantities in the Lagrangian
one.

An alternative approach can be followed by assuming independent anomalous scaling
properties for Lagrangian and Eulerian domains, i.e. without using the bridge relation. In
this case, S2(τ ) is not constrained to scale linearly and one could assume a pure inertial
range intermittent correction as in Equation (5) with z2 = 1 − γ ,

S2(τ ) ∼ ετ

(
τ

TL

)−γ

τ � τη, (11)

where γ is no longer linked to any Eulerian properties; moreover, τη must fluctuate inde-
pendently of the Eulerian fields, too. This is another route to explain the anomalous scaling
of the acceleration variance as a function of Reλ, which has been investigated in [15] and
which is not in contradiction with any exact scaling law in Lagrangian turbulence. In [15],
the intermittent correction γ was obtained from a fit of the scaling of (10).

In Figure 5, we apply the intermittent compensation τ 1−γ to the DNS data shown in
previous sections and observe that the plateau is slightly increased, but it is still very narrow.
Finite-Reynolds number effects are overwhelming.

The question whether S2(τ ) scales linearly, or with an intermittent correction, or does
not scale at all, needs data at higher Reynolds numbers to further support present ideas.

4. Inverse cascade in 2d turbulence

In this section, we present results on Lagrangian structure functions measured in the inverse
cascade regime of 2d homogeneous and isotropic turbulence. Again, the general question
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42 A.S. Lanotte et al.

Figure 5. The second-order Lagrangian structure function compensated as S2(τ )/(ετ 1−γ ), with
γ = 0.22. The anomalous correction γ is extracted from acceleration data shown in Figure (4).

we want to address is whether Lagrangian statistics are compatible with Eulerian statistics,
i.e. if a suitable transformation from space to time is able to reproduce Lagrangian statistics
given the Eulerian one. We remind ourselves that, in spite of the fact that the inverse
cascade is statistically simpler than the direct cascade in 3d (since in 2d inverse cascade,
the Eulerian statistics displays Kolmogorov scaling without intermittency corrections [38]),
a recent work [39] claims that Lagrangian statistics do not reflect this simplicity and cannot
be related to Eulerian statistics.

In the following, we consider Eulerian and Lagrangian structure functions obtained from
numerical simulations of 2d Navier–Stokes equations for the vorticity ω = ∇xuy − ∇yux :

∂ω

∂t
+ (u · ∇)ω = ν∇2ω − α ω + fω, (12)

in the inverse cascade regime at resolutions 20482. The forcing fω is active on a range
of wavenumbers around kf � 256, is δ-correlated in time and injects energy at a fixed
rate εI . About one half of the injected energy flows to large scale generating the inverse
cascade with a flux ε. The α ω friction term is necessary to reach a stationary state, and
defines the large-scale eddy turnover time TL � 1/α. Different runs correspond to different
values of α and, therefore, to different extension of the inertial range of scales. The smallest
characteristic time, the Kolmogorov time τη, is given in the inverse cascade by the time at
the forcing scale lf ∼ 1/kf , that is kept fixed. The extension of the inertial range in the
time domain is thus growing as TL ∝ 1/α.

To compare Eulerian and Lagrangian structure functions, a simple model, motivated
by the cascade model for turbulence, can be introduced. We represent turbulent Eulerian
velocity fluctuations δru as the superposition of the contributions from different eddies in
the cascade [40]: δru = ∑

n unf (r/rn), where un is the typical fluctuation at the scale rn.
The decorrelation function f (x) is such that f (x) ∼ x as x 	 1 and f (x) ∼ 1 for x � 1:
here, we choose the simple function f (x) = 1 − exp(−x).

Within this framework, it is natural to represent the corresponding Lagrangian velocity
fluctuation as δτ v = ∑

n vnf (τ/τn), where τn ∼ r
2/3
n is the correlation time of the eddy at

scale rn. A minimal realisation of this model requires the presence of two scales that govern
the crossover from dissipative to inertial scales, η, and from inertial to integral scales, L.
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Figure 6. Kinetic energy spectra from 2d direct numerical simulations at resolution N2 = 20482,
with α = 0.02 (red +), α = 0.04 (blues ×), α = 0.06 (pink ∗) and α = 0.08 (black �). The line
represents Kolmogorov spectrum E(k) = Cε2/3k−5/3 with C = 6.

We can, therefore, write, introducing explicitly the scaling behaviour in the inertial range,
the following relation:

δru = U f
( r

L

)
+ U

[
1 − f

( r

L

)]
f

(
r

η

) (
r + η

L

)1/3

, (13)

which, for Lagrangian increments, translates into

δv(τ ) = ULf

(
τ

TL

)
+ UL

[
1 − f

(
τ

TL

)]
f

(
τ

τη

) (
τ + τη

TL

)1/2

. (14)

U and UL are the root-mean-square velocities in the Eulerian and Lagrangian domain,
respectively. In Figure 6, it is shown that in the stationary state, we observe an inverse
cascade with a Kolmogorov spectrum that extends from the forcing wavenumber kf = 256
to the friction wavenumber kα � ε−1/2α3/2 [38,41].

In Figure 7, we show the Eulerian second-order structure functions S2(r) = 〈(δru)2〉,
compensated with dimensional scaling (εr)2/3, for different values of α. An important
remark is that, in spite of the clear power-law scaling in the spectra, we do not observe
any inertial range scaling for the Eulerian structure functions, even for the most resolved
simulation. Nonetheless, the simple two-scales model, for the Eulerian statistics (13) and for
the Lagrangian one (14), is able to reproduce quite accurately the crossovers from dissipative
and to integral scales, with parameters (η/L, τη/TL,U,UL) which change according to
dimensional predictions (cfr. caption of Figures 7 and 8). Lagrangian structure functions
S2(τ ) linearly compensated with ετ are shown in Figure 8, together with the prediction
obtained from model (14). The model fits well the data, at least at small and intermediate
times and with parameters that change with the extension of the inertial range.

We remark that the model parameterisation and the Batchelor model or any other model
(see [17,42]) are all constructed on the hypothesis of a linear scaling in the inertial sub-
range. The point we want to make here is that, within the approximation model, the quality
of data fit is comparable for Eulerian and Lagrangian statistics.
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Figure 7. Eulerian second-order structure function S2(r) in the inverse energy cascade, compensated
with Kolmogorov scaling (εr)2/3. Colours and symbols as in Figure 6. Lines represent the fit with
(δru)2 as in Equation (13), which gives the ratio L/η = 12 (α = 0.08), L/η = 16 (α = 0.06), L/η =
25 (α = 0.04) and L/η = 54 (α = 0.02).

More sophisticated multi-scale models can be envisaged, e.g. based on the superposition
of a hierarchy of characteristic scales and times, at the price of a complex form of the
parameterisation.

One interesting result discussed in [39] is that Lagrangian statistics in two dimensional
turbulence are not Gaussian, even if Eulerian statistics are very close to Gaussian in the
inverse cascade. Our simulations confirm this result but suggest that this is a delicate point
as the statistics may depend on the observable. Figure 9 shows the excess kurtosis for
Lagrangian structure function λ(τ ) = [

S4(τ )/S2(τ )2 − 3
]

and for Eulerian structure func-
tion λ(r) = [

S4(r)/S2(r)2 − 3
]
, measured for both the x-component velocity increments

and for the longitudinal velocity increments. The kurtosis of longitudinal velocity incre-
ments is constant and close to Gaussian value at all scales, but this is not the case for
Eulerian increments of a single component of the velocity. We do not have a simple ex-
planation for this observation, but we think that this is a possible origin of the deviation
from Gaussianity observed in Lagrangian statistics. Indeed, Figure 9 also shows that the
Lagrangian excess kurtosis λ(τ ) is very close to λ(r), when time is rescaled using the

Figure 8. Second-order Lagrangian structure function S2(τ ) in the inverse energy cascade, compen-
sated with ετ . Colours and symbols as in Figure 6. Lines represent the fit with (δτ v)2 as in Equation
(14), which gives the ratio of times TL/τη = 7.8 (α = 0.08), TL/τη = 8.9 (α = 0.06), TL/τη = 11.2
(α = 0.04) and TL/τη = 16.1 (α = 0.02).
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Figure 9. Excess kurtosis λ(r) = S4/S
2
2 − 3 for Eulerian longitudinal structure function (× blue);

for the Eulerian x-component structure function (+ red) averaged over the increment vector r taken in
all directions; for the Lagrangian structure function (black line) with time rescaled as r = 0.035τ 3/2.
Data refer to the run with α = 0.02.

bridge relation τr = cr2/3. Of course, this rescaling can work only in the inertial range and,
therefore, we observe deviations at small separation r.

5. Conclusions

The Lagrangian and Eulerian description of the velocity field of a fluid are of course
correlated and it should be possible to rephrase some statistical properties of Eulerian
turbulence in terms of Lagrangian counterparts and viceversa. The question is ‘how much’
and ‘what’ one can bridge by using relation (2).

The simplest phenomenological description connects velocity fluctuations in time to
velocity fluctuation in space, δru ∼ δτ v, where the time-lag, τ , and space separation, r, are
connected by the relation τ ∼ r/δru. From such a connection, one can obtain the prediction
that S2(τ ) ∼ ετ , independently of the Eulerian intermittency, which is the Lagrangian
rephrasing of the Kolmogorov 4/5-law.

As we discussed, both the linear scaling relation of S2(τ ) and the Eulerian vs. Lagrangian
mapping could be objected to. Reasons for questioning their validity are: (i) the fact that
such a relation, contrarily to the 4/5-law, is not rigorously derived; (ii) the fact that the
scaling of the S2(τ ) appears to be of poorer quality than its Eulerian counterpart.

In the present manuscript, we have addressed the issue of the consistency of present
state-of-the-art numerical data with the linear dimensional scaling for the S2(τ ), both in
3d and 2d turbulence. More specifically we have tried to shed further light on the question
whether or not the present data are consistent with the linear scaling for the S2(τ ) plus finite-
Reynolds number effects. Eulerian and Lagrangian data, both for 3d and 2d turbulence,
appear to agree equally well with a Batchelor-like parameterisation, which takes into
account dissipative and integral effects in a phenomenological way.

This indicates that present 3d and 2d Lagrangian data are not inconsistent with the
relation (2), once finite-Reynolds number effects are kept into account. Furthermore, the
use of the Batchelor parameterisation in 3d turbulence allows to make prediction on the
values of Reynolds number for which a given window of direct scaling is expected to appear
in the second-order moment.

Alternatively, one might not follow the Ockham’s suggestion ‘Entia non sunt mul-
tiplicanda praeter necessitatem’ [43] and invoke a genuine – i.e. not Reynolds number
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46 A.S. Lanotte et al.

dependent – departure of S2(τ ) from the linear scaling predicted by (2). For instance, in
[15] it was investigated the possibility that anomalous scaling develops already for S2(τ )
and it was showed that also this option is not inconsistent with the data.

More investigation will be needed to understand whether the simple description (2),
plus Reynolds number effects, is all we need – as far as scaling properties are concerned –
or if anomalous scaling as suggested in [15] is correct.

Here, we also showed that (2) is able to predict the Reynolds number dependency
of the normalised root mean squared acceleration without the need to introduce any free
parameter, if multi-fractal fluctuations in the Eulerian statistics are considered.

Finally, let us comment that in 3d turbulence, different scaling exponents for transverse
and longitudinal spatial increments are observed [11,44], something not fully understood.
Along a Lagrangian trajectory, both longitudinal and transverse Eulerian fluctuations are
naturally mixed and entangled, introducing some uncertainties in the bridge relation as
discussed here. In the 2d inverse cascade regime, Eulerian longitudinal increments do
not show any deviation from Gaussianity, while the excess kurtosis measured on a mixed
longitudinal and transverse Eulerian increments is different from zero. The Lagrangian
equivalent of the latter Eulerian measurement is also non-Gaussian and in agreement with
the bridge relation. Therefore, there are still many open points that must be further clarified.
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