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ABSTRACT

The growth of cloud droplets by diffusion of water vapor in a three-dimensional homogeneous isotropic

turbulent flow is considered. Within a simple model of advection and condensation, the dynamics and growth

of millions of droplets are integrated. A droplet-size spectra broadening is obtained and it is shown to increase

with the Reynolds number of turbulence by means of two series of direct numerical simulations at increasing

resolution. This is a key point toward a proper evaluation of the effects of turbulence for condensation in

warm clouds, where the Reynolds numbers typically achieve extreme values. The obtained droplet spectral

broadening as a function of the Reynolds number is shown to be consistent with dimensional arguments. A

generalization of this expectation to Reynolds numbers not accessible by direct numerical simulation (DNS)

is proposed, yielding upper and lower bounds to the actual size spectra broadening. It is argued that the lower

bound is the relevant limit at high Reynolds numbers. A further DNS matching the large scales of the system

suggests consistency of the picture drawn. The assumptions underlying the model are expected to hold up to

spatial scales on the order of 100 m; no direct comparison with in situ measures is possible. Additional effort is

needed to evaluate the impact of this effect for condensation in more realistic cloud conditions.

1. Introduction

The growth of droplets by condensation is a long-

standing problem of cloud physics (Pruppacher and Klett

1997), meteorology (see, e.g., Houghton et al. 2001),

medicine (Martonen 2000), and engineering (Zhao et al.

1999). A fundamental understanding of key issues, such

as the turbulent mixing inside clouds or the interaction

of turbulence with microphysics, is important for a vari-

ety of applications (e.g., the parameterization of small

scales in large-scale models, the analysis of radiative

transfer through clouds, the accurate prediction of the

initiation of precipitation). At a Reynolds number ap-

proaching Re ; 108, turbulence is known to be highly

fluctuating, with a substantial probability of velocity

differences far exceeding the standard deviation (see,

e.g., Frisch 1995). Such behavior, with large variations at

progressively smaller scales, is even stronger for scalars

advected by turbulent flows, with the formation of

clifflike structures in the field (see, e.g., Shraiman and

Siggia 2000). This means that droplets coming close to

one another might have previously experienced dis-

parate conditions, and mean field–type expectations

become questionable. These concepts have a long his-

tory in cloud physics: turbulence is believed to play a

role both in collision processes and in condensation [see

Shaw (2003) for a review]. In this work we will focus

particularly on the latter process.

Condensation is a fundamental process for the

early stages of cloud evolution when droplets are few

microns in size and collisions are not yet effective. In
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situ measurements of droplet-size spectra in warm

clouds at this early stage revealed the presence of a wide

variety of sizes (Warner 1969). This feature of the

condensational growth still eludes full theoretical un-

derstanding despite the number of different mecha-

nisms proposed. In fact, provided that all droplets grow

in similar ambient conditions, small droplets are ex-

pected to grow faster than large ones, thus narrowing

the size distribution. This yields the still unsolved

problem of the bottleneck between condensation and

collision–coalescence. Indeed, collision rates can be

strongly reduced in the presence of narrow droplet-size

spectra. Many efforts have been deployed to explain the

observed widths of droplet spectra, pointing to the role

of entrainment and mixing with noncloudy air occurring

in the regions of the cloud near the boundaries (see, e.g.,

Blyth 1993) or the local variability of environmental

conditions due to droplet evaporation (Andrejczuk

et al. 2004; Malinowski et al. 1998; Korczyk et al. 2006).

The general conclusion is that these microscopic fluc-

tuations influence the process of mixing occurring at the

interface between cloud and clear air, which is not the

object of the present work.

On the other hand, criticism of the underlying as-

sumption of uniformity in the environmental conditions

has been raised since the 1960s, when the theory of

stochastic condensation was first proposed (see, e.g.,

Mazin 1968; Levin and Sedunov 1966; Bartlett and

Jonas 1972). The spectral broadening arising as a con-

sequence of turbulent fluctuations in the environment

has been analyzed several times in the literature by

means of idealized analytic models (see, e.g., Srivastava

1989; Cooper 1989). More recently, numerical ap-

proaches have been used to test some of these ideas

(Vaillancourt et al. 2002; Celani et al. 2005; Lasher-

Trapp et al. 2005). However, results are not conclu-

sive, particularly because direct numerical simulation

(DNS) of cloud turbulence cannot resolve the entire

range of active degrees of freedom. As a consequence

of the spatial structure of the turbulent fields, DNS

can either focus on large-scale fluctuations, as done by

Celani et al. (2005, 2007), or resolve the small-scale fea-

tures as in Vaillancourt et al. (2001, 2002). The two

choices are mutually exclusive because of finite com-

puting resources and both have strong and weak points,

as discussed in section 2. Here we will try to take ad-

vantage of both these approaches to achieve a deeper

understanding of the role of turbulence as a broadening

mechanism in adiabatic cloud cores. Notice that size

distributions broader than the adiabatic reference from

the uniform parcel model have been measured in adi-

abatic cloud cores as well (Brenguier and Chaumat

2001).

In a nutshell, in this paper we focus on the growth of

cloud droplets by diffusion of water vapor in a turbulent

environment, neglecting possible effects due to en-

trainment, mixing, or droplet properties such as salinity

or curvature [on this point see, e.g., Korolev and Mazin

(2003)]. We first evaluate the spreading of the droplet-

size distribution through two series of direct numerical

simulations at increasing resolution, matching the small-

scale features. Not surprisingly, each single DNS gives a

small degree of spreading, as already pointed out in

previous DNS focusing on small rising fluid parcels

(Vaillancourt et al. 2002). This is consistent with the fact

that in a small cloud with limited vertical updraft, the

fluctuations in the supersaturation are small as well.

However, this only tells us that turbulence at the

smallest scales alone fails to reproduce the observed

broadening of the droplet-size distributions.

Then we evaluate the dependence of the size spectra

broadening on the turbulent Reynolds number (i.e., on

the range of spatial scales resolved). The broadening is

found to increase with the Reynolds number of turbu-

lence. Because the Reynolds numbers of real cloud

turbulence are several orders of magnitude larger than

those described by DNS, this increase must be accoun-

ted for when assessing the role of turbulence for con-

densation in clouds. On the basis of a dimensional anal-

ysis, we derive upper and lower bounds on the trend of

the spectral broadening as a function of the Reynolds

number. The upper bound is obtained by neglecting the

vapor depletion due to condensation onto cloud droplets.

We argue that this should be significant at small Reyn-

olds numbers, and we show that it is consistent with the

two series of DNS performed. We then reason that the

lower bound, where the vapor fluctuations are consid-

ered immediately depleted for condensation/evapora-

tion, should be more significant at high Reynolds

numbers. A further DNS matching the large scales of

the problem suggests consistency with the argument.

The paper is organized as follows: In section 2 we

introduce the model for the time evolution of the vapor

field and the droplets advected by the turbulent airflow.

Section 2a is devoted to the numerical approach, whereas

section 3 describes DNS details and the range of pa-

rameters explored. Results concerning the spreading of

the droplet-size spectrum are presented in section 4, and

their implications for large Reynolds numbers are dis-

cussed in section 5. Conclusions and perspectives follow

in section 6.

2. Model equations

We focus on a turbulent velocity field advecting water

vapor and droplets. The latter undergo size changes for
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evaporation or condensation of the surrounding vapor.

The three-dimensional velocity field of in-cloud air (v)

evolves according to the Navier–Stokes equations for an

incompressible flow

›tv 1 v � $v 5 �$p

ra

1 nDv 1 f, where $ � v 5 0, (1)

where p is the pressure, ra is the air density, and n is the

air kinematic viscosity. The vector f represents an ex-

ternal statistically homogeneous and isotropic forcing,

providing a turbulent stationary flow. Because we ne-

glect thermal convection (i.e., temperature is not ex-

plicitly considered), the energy balance only includes

kinetic energy and viscous dissipation. However, latent

heat effects on the vapor field are taken into account in

the equation for the supersaturation field, as clarified

below.

In the spirit of classical Kolmogorov theory, turbu-

lence can be considered statistically homogeneous and

isotropic only in the limit of very large Reynolds num-

ber and at the smallest scales of motion (Frisch 1995).

As for cloud physics, in Vaillancourt and Yau (2000) the

authors argue that large-scale thermal gradients can be

neglected in warm-cloud cores for spatial scales up to

L ; 100 m. Additionally, anisotropy is produced through

buoyancy by microscopic temperature fluctuations

coupled with droplet evaporation. This effect can be

important for cloud–clear air mixing (see Korczyk et al.

2006; Malinowski et al. 1998; Andrejczuk et al. 2004),

which we are here ignoring. We remark that previous

numerical studies in two dimensions (Celani et al. 2005,

2007) suggest that the qualitative effects of turbulence

on droplet size spectra do not rely specifically on the

statistical details of the flow regime analyzed.

Water vapor molecules carried by the turbulent

velocity field are the source for droplet growth by con-

densation. The relevant quantity for condensation/eva-

poration is the supersaturation, defined as s 5 e/es 2 1,

where e and es are the vapor pressure and the sat-

uration vapor pressure respectively; droplets grow in

regions with higher supersaturation and evaporate in

regions with lower supersaturation values, as described

by Eq. (4).

For the sake of generality, we adopt here a simple

generalization of the well-known model for the super-

saturation time evolution proposed in Twomey (1959).

Whereas Twomey considered a one-dimensional equa-

tion for the time-dependent supersaturation function,

here we consider s as a field s(x, t) 5 e/es (x, t) 2 1,

fluctuating both in space and time. Note that because

there is no mean vertical velocity in our model, super-

saturation s(x, t) has a zero mean value and is allowed to

fluctuate from positive to negative values. Supersatu-

rated and undersaturated regions can coexist at the

same time in the considered volume. The generalization

of Twomey’s equation for the supersaturation field is an

advection–diffusion equation:

›ts 1 v � $s 5 kDs 1 A1w� s

ts
, (2)

where k is the molecular diffusivity of water vapor in air

and w(x, t) is the vertical component of the turbulent

velocity field v. Note that this equation is only approx-

imately true because temperature and moisture have

slightly different diffusion constants. In Vaillancourt

et al. (2001) the authors separately integrate the equa-

tions for temperature and moisture to obtain the su-

persaturation. Another difference with respect to the

cited work is that here the average supersaturation

vanishes, so that mean growth of the droplets popula-

tion is not considered.

The scalar field s is considered to be passive; that is,

we are neglecting the compositional effects of vapor on

the buoyancy forces acting on the flow, which are gen-

erally thought to be small (see Stevens 2005). The term

A1w acts as a source/sink term of supersaturation re-

sulting from the variation in temperature and pressure

with height. By standard assumptions (see, e.g., Politovich

and Cooper 1988; Pruppacher and Klett 1997) it turns

out that A1 5 Lg/(RycpT2) 2 g/(RaT ), where L is the

latent heat of evaporation, Ry and Ra are the gas con-

stants for vapor and dry air, cp is the specific heat at

constant pressure, and g is the gravitational acceleration.

The term 2s/ts accounts for the double effect of

condensation/evaporation on supersaturation: on one

hand, the phase change directly modifies the water vapor

content; on the other, it locally modifies temperature—and

therefore supersaturation—because of absorption or

release of latent heat. The parameter ts is the phase

relaxation time scale of the supersaturation and de-

pends locally on the concentration and size of droplets:

t�1
s 5

4prwA2A3

V
�

n

i51
Ri , (3)

where Ri are the radii of the n droplets inside the con-

sidered volume V; A2 is a function of thermodynamic

parameters, and we consider it constant as shown in

Table 1 (see, e.g., Pruppacher and Klett 1997); rw is the

water density; and A3 is the rate of droplet radius

growth by condensation [see Eq. (4)]. The role of ts is of

crucial importance as already pointed out in several

previous works (see, e.g., Clark and Hall 1979).
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In the presence of a mean updraft velocity W and if

variations of ts with the mean radius are negligible, the

mean supersaturation approaches its quasi-steady value

Sqs ’ A1Wts at times longer than ts. Because here we

consider vanishing mean updrafts, we will apply the

concept of quasi-steady state to the fluctuations of s

rather than to its mean value.

The remarkable feature of the simple model repre-

sented by Eqs. (1) and (2) is that despite its simplicity, it

allows us to identify nontrivial mechanisms leading to

the spreading of the size spectra.

Given the evolution equation for the Eulerian tur-

bulent fields, we can now introduce the Lagrangian

dynamics of cloud droplets and the time evolution of

their radii. A complete description of the relation be-

tween the water vapor and the size of a spherical droplet

would imply an integral equation for the local dynamics

occurring at the droplet surface. Note, however, that the

typical time scales associated with the diffusional

growth of an isolated droplet are much smaller than the

fastest time scale associated with turbulent changes in

the ambient conditions (see Vaillancourt et al. 2001). By

assuming instantaneous water vapor equilibrium, we

end up with the standard equation for the diffusional

growth of the ith droplet (see, e.g., Pruppacher and

Klett 1997):

dRi(t)

dt
5 A3

s[Xi(t), t]

Ri(t)
. (4)

Here A3 is a function of the local conditions, air tem-

perature, and pressure and is assumed to be constant

throughout the entire volume (variations of this pa-

rameter with temperature in typical warm cloud con-

ditions are smaller than 3%). Its detailed expression can

be found in Pruppacher and Klett (1997); here we just

mention that its value is derived neglecting curvature

and salinity effects, as is appropriate for the droplet

sizes considered in this study (.5 mm).

According to Eq. (4), the growth rate varies from a

droplet to another because it depends on the supersat-

uration fluctuation s[Xi(t), t] measured along the tra-

jectory Xi(t) of the single droplet. Because of turbulent

transport, initially close droplets separate very rapidly

and eventually experience disparate values of super-

saturation throughout the entire cloud volume. This is

the most important difference with respect to Twomey’s

model where all the droplets are exposed to the same

supersaturation value.

Cloud droplets can be described as independent Stokes

particles, whose trajectories Xi(t) and velocities Vi(t)

evolve according to

dXi(t)

dt
5 Vi(t) and (5)

dVi(t)

dt
5 �Vi(t)� v[Xi(t), t]

ti
d

1 gẑ. (6)

Here v[Xi(t), t] is the fluid velocity at the particle posi-

tion; ti
d(t) 5 R2

i(t)/(3nb) is the particle response time (or

Stokes time); b 5 3ra/(ra 1 2rw) ’ 3ra/(2rw) is pro-

portional to the air/water density ratio; and g is the

gravitational acceleration. Equations (5) and (6), de-

rived from the more general treatment of Maxey and

Riley (1983), are valid for dilute suspensions of small

spherical heavy particles. These hypothesis are well

verified during the condensation stage [as discussed,

e.g., in Vaillancourt and Yau (2000)]. Because collisions

are still negligible in the range of parameters consid-

ered, droplet–droplet hydrodynamical interactions are

ignored. Droplet back reaction onto the airflow is ne-

glected as well because the mass loading and the ratio

between droplet size and Kolmogorov scale are much

smaller than 1 (one-way coupling model). Notice that

gravitational acceleration is included in our model, al-

though we shall not discuss the interplay between sed-

imentation and turbulence in our simulations (see, e.g.,

Grabowski and Vaillancourt 1999). This is left for future

studies.

Numerical procedures

Equations (1) and (2) are integrated using pseudo-

spectral methods with 2/3-rule dealiasing (Orszag 1971)

in a triply periodic box. The fully parallelized code re-

lies on the use of fast Fourier transforms (FFTs) for an

TABLE 1. Reference values for the physical parameters used in the numerical experiments. The air kinematic viscosity is n ’

0.15 cm2 s21, and the molecular diffusivity of water vapor in air is k ’ 1025 m2 s21; A1 is the global supersaturation gradient and A2 and A3

are functions of the ambient thermodynamic parameters. As reference values for the temperature and pressure, we used T 5 283 K and

p 5 1000 hPa. The values of the vapor phase relaxation time ts, droplet radius R, and Stokes number St correspond to averages on the

initial condition of droplet population.

Label A1 (m21) A2 (kg21 m3) A3 (mm2 s21) Ndrops/V (cm23) LWC (g m23) ts (s) R (mm) St

Series 1 5 3 1024 350 50 130 1.2 2.5 13 3.5 3 1022

Series 2 5 3 1024 350 50 130 0.07 7 5 5 3 1023
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efficient evaluation of the advection terms in Fourier

space. We used the open-source Fastest Fourier Trans-

form in the West (FFTW) 2.1.5 libraries.

Unless stated differently, molecular viscosity (and

diffusivity) is chosen to match the Kolmogorov length

scale h with the grid spacing h ’ dx: this choice ensures

a good resolution of the turbulent fluctuations at any

scale and prevents oscillations due to truncation of

small-scale motion (see Spyksma et al. 2006). For both

equations, time stepping is done using a second-order

Adam–Bashforth (AB) scheme, and in particular the

time step is chosen to accurately resolve the smallest

turbulent fluctuations and the fluid acceleration.

In Eq. (1), kinetic energy is injected at an average

rate « by keeping constant the total energy in each of the

first two wavenumber shells (Chen et al. 1993). The

scalar field is forced by the assigned gradient A1; the term

2s/ts does not contribute as long as droplets are not

injected into the flow. In our DNS, we consider each

droplet to affect the value of ts in the eight nodes of the

grid cell surrounding its position. The weight of the con-

tribution to each node is calculated via a three-linear

extrapolation.

Droplet dynamics is also fully parallel. Droplet mo-

tion [Eqs. (5) and (6)] and radius evolution are inte-

grated with a second-order AB scheme. To obtain

droplet velocity from Eq. (6), the underlying flow ve-

locity at the droplet position has to be computed. This is

done via a linear interpolation in the three spatial di-

rections (Yeung and Pope 1988), which was demon-

strated to be adequate to obtain well-resolved particle

acceleration. Similarly, we compute the vapor field

s[X(t)] at the droplet position to evolve the radius.

3. Numerical simulations and range of parameters

As mentioned earlier, DNS of cloud physics present a

major problem: there are a vast number of degrees of

freedom that cannot be described simultaneously. Tur-

bulence is organized in spatial structures of typical sizes

ranging from the large-scale L of thousands of meters

down to the Kolmogorov scale h (typically ;1 mm).

Similarly, the time scales range from thousands down to

fractions of a second. Within this highly turbulent me-

dium, a population of 1014–1018 droplets evolves. More-

over, even if droplets are much smaller than any tur-

bulent eddy, their trajectory spans the whole range of

turbulent scales. This yields correlations with the fluc-

tuations of the vapor field [see Celani et al. (2005, 2007)]

and with the structures of the velocity field as shown, for

example, in Eaton and Fessler (1994). Therefore, tur-

bulent motion at any scale plays a significant role in

droplet dynamics. However, when dealing with experi-

ments in silico, because of computational limitations it is

compulsory to choose a setting that describes only a

limited range of spatial structures in the system.

Recent results, reported in Celani et al. (2005, 2007),

of direct numerical simulations in two dimensions

pointed out the importance of the large-scale fluctua-

tions of the vapor field. These provide a strongly vari-

able environment for droplet evolution, resulting in a

spreading of the droplet-size spectrum. In such context,

the small scales of turbulence cannot be resolved and

the analysis is limited to a statistically representative

subset of the whole population of droplets. In Vaillancourt

et al. (2002), the complementary setting is adopted:

by concentrating on a small rising parcel, the authors

can consistently describe the droplet evolution in full

detail. This approach provides small fluctuations that

eventually produce a limited degree of spreading. Note

that the small scales inside a cloud are the end point of a

turbulent cascade involving a wide range of interacting

spatial and temporal scales. Consequently, they are not

independent from the large scales, suggesting that

approaches that separate small from large scales might

fail in reproducing turbulent effects. In this respect,

because DNSs do not describe the whole inertial range

of cloud turbulence, the fluid-parcel approach does not

represent a small portion of a big cloud, but rather a

very small cloud.

Here we wish to investigate how turbulence effects

change with the Reynolds number by merging the two

complementary approaches above mentioned. This is a

crucial step in assessing the role of turbulence for cloud-

droplet condensation, since real cloud turbulence has

Reynolds numbers dramatically higher than the simu-

lated flows. To this purpose, we start by performing two

series of direct numerical simulations at increasing

resolution. The grid spacing Dx of each simulation cor-

responds to about 1 mm. By progressively increasing the

number of grid points for each spatial direction, we can

resolve larger integral scales L, defining the size of the

cloud. More precisely, we consider two series of four

numerical experiments, labeled runs A, B, C, and D,

with 643, 1283, 2563, and 5123 grid points respectively.

The two series of simulations have different initial liq-

uid water content (LWC): ;1.2 g cm23 for series 1 and

;0.07 g cm23 for series 2. The integral scale of the

system varies from L ; 9 cm up to L ; 70 cm. The

microscale Reynolds numbers Rel ’
ffiffiffiffiffiffiffiffiffiffiffiffi

15 Re
p

(see Frisch

1995) range from Rel ; 40 to Rel ; 185, which rep-

resents the state of the art for DNS in cloud physics. The

ratio between the air kinematic viscosity and the vapor

molecular diffusivity, also called the Schmidt number, is

Sc 5 n/k 5 1, so that the flow and the scalar dissipative

scales are of the same order. Kinetic energy dissipation
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is chosen to be « ’ 1023 m2 s23, which is consistent for

clouds with moderate turbulence levels (see Chaumat

and Brenguier 2001).

Table 1 shows the reference values of physical pa-

rameters such as A1, A2, and ts used in the numerical

experiments; Table 2 lists DNS details for the two series

of simulations.

Clearly the process of doubling the resolution, if

iterated, would ideally lead to the description of the

whole range of scales from h to L appropriate for cloud

conditions. Because we can only perform the first few

iterations of this process, the next step will be to discuss

if this can be extrapolated to give information on Reyn-

olds numbers that are not accessible by DNS. An at-

tempt in this direction will be discussed in detail in

section 5.

We obtain a statistically stationary state for the ve-

locity and supersaturation fields with no droplets by

integrating Eqs. (1) and (2) for few large-scale eddy

turnover times TL 5 L/yrms. Figure 1 shows the super-

saturation spectrum at the stationary state for run D,

where Rel ; 185, before particle injection. In agree-

ment with classical Kolmogorov–Obukhov–Corrsin the-

ory (see, e.g., Tennekes and Lumley 1972), this exhibits

a k25/3 power law behavior in the Fourier space. Be-

cause the scalar spectrum is peaked on the large scales,

as the integral scale increases we approach larger and

larger fluctuations. We indicate with s0
s the supersatu-

ration standard deviation in the stationary state before

droplet injection. In the inset of Fig. 1, we show that s0
s

increases linearly with the size of the system as expected

from a dimensional balance of terms in Eq. (2) dis-

regarding the term 2s/ts, yielding s0
s ; A1L. The above

fit also provides the proportionality constant that turns

the dimensional relation in a prediction. Such increase

can be understood from the physical viewpoint: larger

cloud sizes correspond to larger displacements and

stronger adiabatic cooling. This directly provides larger

fluctuations in the vapor field through the term A1w in

Eq. (2). When droplets are injected in the flow, this

picture changes and the supersaturation fluctuations are

modified as described below.

Note that we are not describing droplet nucleation

onto cloud condensation nuclei: our simulations start

with droplets already activated. Therefore, there is no

conservation of the total water content at time zero,

when the droplets are injected in the volume. However,

because the total water conservation is conserved at any

later time, we consider this irrelevant for the results of

the simulations performed.

4. Spectral broadening

Once the steady state has been attained, a mono-

dispersed population of droplets with initial radius Ri 5

13 mm for series 1 and Ri 5 5 mm for series 2 is injected

into the flow. The complete system—flow, scalar, and

droplets—has been studied, at the largest resolution, for

about two large-scale eddy turnover times. Longer time

integrations were performed at lower resolutions. Drop-

let concentration is for all runs ’130 cm23, which means

TABLE 2. Parameters of the DNS, series 1 and 2. From left to right: number of grid points N3, integral scale L, large-scale eddy turnover

time TL, microscale Reynolds number Rel, average kinetic energy dissipation rate e, Kolmogorov spatial scale h, Kolmogorov time scale

th, initial supersaturation standard deviation s0
s, velocity standard deviation yrms, and number of droplets Ndrops.

Label N3 L (cm) TL (s) Rel « (m2 s23) h (cm) th (s) s0
s (%) yrms (m s21) Ndrops (3105)

A 643 9 2.0 40 1023 0.1 0.1 1.5 3 1023 4 3 1022 0.93

B 1283 18 3.5 65 9.0 3 1024 0.1 0.1 3.4 3 1023 5.0 3 1022 8.2

C 2563 38 5.5 105 1023 0.1 0.1 6.1 3 1023 7.0 3 1022 71.2

D 5123 70 7.6 185 1.1 3 1023 0.1 0.1 1.2 3 1022 1.0 3 1021 320

FIG. 1. Log–log plot of the stationary supersaturation spectrum

for run D at Rel ; 200, before injection of droplets. It shows a k25/3

power law behavior, as expected from Kolmogorov–Obukhov–

Corssin theory. The turbulent velocity field also displays a

Kolmogorov spectrum (not shown). Inset: log–log plot of the

standard deviation of the supersaturation field s0
s, measured in the

stationary state, vs the size of the system L. The behavior is in

agreement with the dimensional prediction s0
s ; A1L.
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that, on average, about one out of every two to four cells

contains a droplet. In the largest simulation we followed

the time evolution of 32 million droplets. Initially, these

are distributed randomly in space according to a sta-

tistically homogeneous Poisson distribution. The La-

grangian Eqs. (5) and (6) for particle motion are inte-

grated simultaneously with those for the Eulerian fields

(1) and (2). Particle initial velocities are set equal to the

local fluid velocity.1

As the cloud particles are released, they explore the

entire volume and experience the range of vapor fluc-

tuations available in the system. In Fig. 2, the droplet

square size distributions P(R2) are shown for runs A–D

after one large-scale eddy turnover time for series 1 and

series 2. The mean value is constant because hsi5 0, while

a small degree of spreading is present for each simulation,

increasing with the size of the cloud. This is due to the fact

that when evolving in a larger cloud, droplets are trapped

in longer updrafts and downdrafts and therefore experi-

ence stronger fluctuations of supersaturation. When deal-

ing with small clouds, the broadening resulting from the

different droplet histories is limited, as already pointed

out in Vaillancourt et al. (2002), but increases as we

consider larger volumes (and larger Re).

A more quantitative measure of the spectral broad-

ening is shown in the inset of Fig. 2. Here we show that

for t # TL the standard deviation of the square radii

R2(t) increases linearly in time. Linearity implies that at

short time lags droplet surface grows with the vapor

fluctuation initially experienced and does not feel the

underlying local variations.2 After few phase relaxation

times ts have elapsed, the vapor field standard deviation

is depleted by droplet absorption, thus slowing down the

broadening of droplet size distribution. The mean vapor

phase relaxation time—estimated through Eq. (3) with

average concentration ’130 drops cm23 and mean ra-

dius 13 mm and 5 mm—turns out to be ’2.5 s for series

1 and ’7 s for series 2. Because this time scale is com-

parable with the eddy turnover time for simulations A–

D (see Tables 1 and 2), the supersaturation fluctuations

do not change considerably from their initial value

during TL. For this reason, the linear growth of sR2 (t) in

time extends to the whole large-scale eddy turnover

time TL and the final spreading, measured at t 5 TL, is

well approximated dimensionally from Eq. (4):

sR2 (TL) ; A3s0
s TL . (7)

In Fig. 3 the final broadening sR2 (TL) is shown to in-

crease as a function of the microscale Reynolds number

Rel characterizing flows A–D. This is another way to

show that the increase of updraft/downdraft intensity

FIG. 2. Droplet square size distribution P(R2) measured after one large-scale eddy turnover time TL for the four DNS of series (left)

1 and (right) 2. At increasing the turbulence Reynolds number, we move from inner to outer curves. Symbols are as follows: run A—open

triangles, run B—filled dots, run C—open circles, and run D—filled squares. In each run, the droplets’ initial size distribution (not shown)

is d(R 2 R0), with R0 5 13 mm for series 1 and R0 5 5 mm for series 2. Each simulation presents a small degree of spreading, which

increases with the Reynolds number. Inset: Log–log plot of the time evolution of the standard deviation of the square size distribution sR2

for runs A–D (from bottom to top). Symbols are as in the main figure.

1 Tests have been performed by setting the droplet initial ve-

locity equal to the terminal velocity vT 5 gtd. We did not observe

any significant deviations in the results. Indeed, particles rapidly

equilibrate to the flow on a time scale on the order of their response

time.

2 A proportional linear growth is also observed for the standard

deviation of droplet radii R(t) (not shown). This is because, given

the tiny supersaturation fluctuations, the droplet-size distribution

is close to a Gaussian and the mean radius is much larger than the

standard deviation. Hence, s2
R2 ’ 2s4

R 1 4s2
RhRi

2
’ 4s2

RhRi
2.
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enhances the supersaturation fluctuations available and

thus droplet differentiation.

The reason why we analyze this dependence is that we

would like to generalize it to arbitrary Reynolds num-

bers, as discussed in section 5. Note that the results of

the two series of simulations are remarkably close,

pointing once more to a limited role of vapor absorption

by condensation at small Reynolds number. The picture

will change at larger Reynolds numbers as discussed

later.

The relation between final broadening and Reynolds

number can be obtained from Eq. (7), which—we em-

phasize again—is well verified when we consider the

spreading at time scales comparable with the phase re-

laxation time ts. To do this, we use the following stan-

dard dimensional relations valid for statistically homo-

geneous and isotropic turbulence (see, e.g., Pope 2000):

TL ; thRel and wrms ; yhRel
1/2, where wrms is the root-

mean-square value of the vertical component of the

velocity field. Remembering from the previous section

that the supersaturation fluctuations have initial stan-

dard deviation s0
s ; A1L ; A1wrmsTL, it is straightfor-

ward to show that Eq. (7) yields

sR2 ; A3A1yht2
hRe5/2

l , (8)

based on self-similarity of the growth process during the

turbulent regime. In Fig. 3 we show for comparison the

dimensional expectation (8).

5. Discussion

It is natural to ask whether this trend can give infor-

mation on the final broadening achieved at Reynolds

numbers higher than Rel 5 185. This point deserves

insight because the Reynolds number of real cloud

turbulence is several orders of magnitude larger than

those described by direct numerical simulations.

At larger Reynolds numbers and large-scale eddy

turnover times, droplets significantly absorb the sur-

rounding vapor, so that the initial standard deviation s0
s

is no longer a good approximation of ss(t) at long times.

This means that the scaling (8) is an upper bound for the

actual spectral broadening at larger Reynolds number.

A lower bound can be simply obtained by assuming that

droplet feedback on the supersaturation is instanta-

neous. This is done by estimating the supersaturation

fluctuations with their quasi-steady value ss
qs ; A1wrmsts,

coming from the balance of the last two terms on the rhs

of Eq. (2). For a discussion of the quasi-steady ap-

proximation and its validity see, for example, Politovich

and Cooper (1988). Replacing s0
s with the quasi-steady

value ss
qs in the dimensional relation (7), we obtain

sR2 ; A3A1yhthtsRe3/2
l , (9)

yielding a correction to the upper bound (8) of a factor

ts/TL. As illustrated below, the difference between the

two bounds becomes larger and larger as we approach

large Reynolds numbers. We will argue that the lower

bound is the relevant limit at high Reynolds numbers.

The ratio ts/TL fluctuates both in space and time ac-

cording to the local properties of both turbulence and

droplet population. We can estimate the large-scale

eddy turnover time and the Reynolds number through

the standard dimensional relations TL ; thRel and

Rel ; (L/h)2/3 (see, e.g., Pope 2000). The proportion-

ality constants are estimated by fitting the dimensional

relations on the small-scale data, as illustrated in sec-

tion 3 for s0
s. We choose to extrapolate the results to a

cloud core of size L ; 100 m, since the homogeneous

isotropic scheme is expected to hold at these scales.

For this system, the Reynolds number is in the range

Rel ’ 4000–7000 and the large-scale eddy turnover

time is TL ’ 150 s. In the absence of vapor absorption

onto droplets, the upper bound (8) gives sR2 (TL) ,

200 6100 mm2. The time scale ts does not depend on

Reynolds but only on the LWC and the droplet density.

FIG. 3. Log–log plot of the spreading of droplet size distribution

sR2 ðTLÞ for the square radius R2, measured after one large-scale

eddy turnover time TL as a function of the Reynolds number Rel.

Data refer to simulations A–D of series 1 (squares) and 2 (circles).

For both series, the spreading is larger as the Reynolds number

increases because droplets evolve in conditions that are more

and more differentiated. The dimensional prediction sR2 ; c1Rej

l

with j 5 5/2 and c1 } A1A3yht2
h is shown for comparison (see the

text). The extrapolation of this law gives an upper bound to the

final spreading for the target cloud of parameters L 5 100 m,

s0
s ; 2%, and Rel ; 4000–7000: sext

R2 ; 200 6 100 mm2. A correc-

tion of the expectation accounting for vapor depletion caused by

droplet feedback gives sext
R2 ; 3.3 6 1.6 mm2 for series 1 and sext

R2 ;

9.3 6 4.5 mm2 for series 2 (see the text).
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If the liquid water content is 1.2 g m23 and there are 130

drops cm23, then its mean value is ts ’ 2.5 s, as in series

1. The extrapolation of the lower bound (9) gives

sR2 (TL) . 3.3 6 1.6 mm2. Note that to put error bars on

the Reynolds number we consider fluctuations of 25%

on its average value. These error bars correspond to the

same level of fluctuations for the instantaneous value of

the Reynolds number observed in runs A–D.

As anticipated before, the lower bound is expected to

become more and more relevant as we approach large

Reynolds numbers. However, validating this expecta-

tion by a direct numerical simulation, including the

proper number of droplets and the whole range of

space–time scales involved, is not possible. Instead, we

present a direct numerical simulation, labeled run E,

designed to reproduce the large-scale parameters typi-

cal of a cloud core of size L 5 100 m: the large-scale

eddy turnover time is TL ’ 150 s, the velocity root-

mean-square value is yrms ’ 0.6 m s21, and the mean

kinetic energy dissipation is « 5 1023 m2 s23. For this

larger cloud core, the supersaturation standard devia-

tion at initial time is s0
s ’ 2%: this is consistent with the

scaling behavior s0
s } A1L shown in Fig. 1 for runs A–D.

The goal of this further experiment is to verify that at

larger volumes and longer time scales (TL is now much

larger than ts), the quasi-steady approximation for the

vapor fluctuations holds and the spectral broadening

approaches the lower bound (9). Of course, the small-

scale parameters do not match the realistic ones: in this

run the smallest resolved scales are h ’ 25 cm and th ’ 4

s, and the turbulence Reynolds number is Rel 5 185.

Droplets have initial radius 13 mm, as in series 1, and the

numerical resolution is N3 5 2563 grid points. We re-

mark that starting from droplets with initial radius R 5 5

mm, as in series 2, implies that several droplets evapo-

rate during the simulation. We do not present these

results because the complete evaporation of droplets

would require a detailed evaluation of the nucleation

phase that we neglect here.

Space–time integration of the system has the same

features described in section 3, and reference values for

the physical parameters entering the model equations

are those listed in Table 1.

Clearly, we cannot follow the evolution of 130 cm23

droplets: they would sum up to N* 5 1.3 3 1014. The

traditional cloud physics approach avoids this problem

by focusing on a number density function representing

the local concentration of droplets with a given size

(see, e.g., Andrejczuk et al. 2004; Jeffery et al. 2007).

However, a complete continuous description for the

turbulent transport of inertial particles is still an open

issue (see Boffetta et al. 2007 and references therein).

Although more computationally demanding, a La-

grangian approach turns out to be more appropriate.

We choose then to consider the complete evolution of a

subset Ndrops of droplets, representative of the whole

population. Of course, the whole population would

absorb, for condensation, more vapor than the repre-

sentative subset does; therefore, an algorithm is needed

to account for the correct feedback of droplets on the

supersaturation field. To accomplish this task, we simply

normalize the field ts with a factor N*/Ndrops. Details on

the meaning and the convergence of this simple algo-

rithm are discussed in appendix A.

At droplet injection, the supersaturation fluctuations

for simulation E start with s0
s ; A1wrmsTL ’ 2%; after a

few vapor phase relaxation times they are depleted to

ss
qs ; A1wrmsts ’ 0.04% and oscillate around this value

at later times. Droplets thus experience for most of the

evolution a supersaturation level close to the quasi-

steady value, which validates the lower bound scenario.

The relevant spreading of the square size distribution

shown in Fig. 4 can be quantified in terms of the stan-

dard deviation of the radius and of the square radius.

After one large-scale eddy turnover time, we obtain

sR(TL) ’ 0.30 6 0.04 mm and sR2 (TL) ’ 7 6 1 mm2,

respectively. Although simulation E cannot resolve

the whole range of spatial scales of turbulence, by match-

ing the parameters on the large scales of the problem

it is able to reproduce the intensity of the large-scale

fluctuations.

The final spreading achieved is very close to the lower

bound, obtained above by assuming that the supersat-

uration fluctuations stabilize to ss
qs and rapidly forget

their initial condition. This is consistent with the picture

FIG. 4. Droplet square size distribution P(R2) measured after

one large-scale eddy turnover time TL ; 150 s for run E, matching

the large-scale cloud parameters. Inset: time evolution of the

standard deviation of the radius distribution sR(t) and the square

radius distribution sR2 (t). At time t 5 TL, we measure sR(TL) ’
0.30 6 0.04 mm and sR2 (TL) ’ 7.5 6 1 mm2.
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drawn and supports the observation that the lower

bound is more relevant when dealing with large space–

time scales. The result suggests that this could be the

case for large Reynolds number turbulence. Let us re-

mark, however, that care must be taken in this respect

because the spatiotemporal complexity of turbulence at

Rel ’ 5000 is not described by the direct numerical

simulation E here presented.

A direct comparison with in situ measurements is not

possible because the properties of cloud turbulence and

fluctuate considerably. Several broadening mechanisms

are likely to occur simultaneously and it is hard to dis-

tinguish between them through in situ measurements

[see discussion in Brenguier and Chaumat (2001)].

Moreover, we are targeting a cloud core of 100 m be-

cause of consistency of the approximations made in the

model, but this choice of the size is conservative and

somewhat arbitrary. Realistic values are typically one

order of magnitude larger where we cannot venture our

dimensional analysis. For the sake of completeness we

recall, however, that in Brenguier and Chaumat (2001)

the authors analyze samples of narrow spectra selected

in nonprecipitating cumulus clouds. Measurements of

droplet spectral broadening, together with the discus-

sion of the instrumental artifacts, can be found for

samples at altitudes of about 1500 m over the cloud

base and with droplet concentrations between 200 and

450 cm23.

6. Conclusions and perspectives

Turbulent fluctuations have been shown to play a

crucial role in the broadening of the droplet-size dis-

tribution in an idealized setting for condensation in

warm adiabatic cloud cores. A qualitative explanation

for this observation relies on the nontrivial spatial

structure typical of turbulent fields. Large eddies can

trap droplets in strong vertical displacements, produc-

ing relevant supersaturation fluctuations. The different

growth histories resulting from these extreme events

yield the observed size-spectrum broadening. The effect

is expected to grow with the size of the cloud, since this

allows droplets to get trapped in longer updrafts. We

confirm this expectation by means of two series of direct

numerical simulations up to Rel ; 185 and with mil-

lions of droplets. In particular, we quantify the increase

of broadening as a function of the microscale Reynolds

number, a measure of the range of spatial scales of

turbulence.

The general outcome of this result is that the role of

turbulence for condensation in clouds may not be

assessed just by focusing on small Reynolds numbers,

where a limited range of spatial scales is considered.

This is the case for fluid parcel models, which in fact do

not represent a portion of a large cloud but rather a very

small cloud. In a real cloud, droplets are brought close

to one another by turbulence, but they previously ex-

perience disparate supersaturation fluctuations, much

stronger than the tiny ones occurring in a single parcel.

The results that we obtain at moderate Reynolds

number are consistent with those found in Vaillancourt

et al. However, as already pointed out, the spectral

broadening may achieve relevant values at high Reyn-

olds numbers.

Therefore, a strategy must be conceived to extrapo-

late the results of DNS or laboratory experiments that

cannot achieve the extreme Reynolds numbers of real

cloud turbulence. To get a better intuition on this point,

we perform a dimensional analysis of the final broad-

ening viewed as a function of the Reynolds number. At

moderate Rel it is possible to neglect the feedback of

droplets on the vapor field. This yields a dimensional

expectation consistent with the DNS data.

At larger Reynolds numbers, however, droplets are

expected to consistently modify the surrounding vapor

field. Therefore, the extrapolation of the abovementioned

dimensional behavior provides an upper bound to the

actual spectral broadening at large Reynolds numbers.

At extremely high Reynolds numbers the upper bound

is expected to largely overestimate the actual spectral

broadening. Based on the quasi-steady approximation

for the vapor field, we propose a correction to estimate

the effective absorption of vapor for condensation at

large Reynolds numbers, yielding a lower bound on the

spectral broadening. The quasi-steady estimate is ex-

pected to hold for time scales much larger than the time

scale of vapor absorption. A further simulation designed

to discuss the validity of this argument shows that at

large space–time scales the final broadening is well ap-

proximated by the lower bound. This suggests, within

the limits of simple dimensional arguments, that the

lower bound could be a good candidate to estimate the

size-spectra broadening at large Reynolds numbers.

In this work, we focused on the role of turbulence for

droplet condensation at moderate to high Reynolds

numbers. To enlighten the basic mechanisms yielded

by turbulence, we considered a simple model describ-

ing the essential physical processes. The underlying

assumptions are expected to hold up to spatial scales

on the order of hundreds of meters. This prevents us

from directly comparing the results with in situ mea-

surements because cloud cores are typically kilometers

in size. More sophisticated models have been proposed

in the literature accounting for additional microphys-

ical and thermodynamic couplings. Ingredients such

as the explicit dependence of the vapor field on the
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temperature fluctuations, the microscopic interactions

of droplets with the turbulent fields, and the role of

buoyancy both at small and large scales may yield

corrections to the presented results. Other aspects

(such as the small-scale intermittent nature of the ve-

locity and vapor fields, droplet preferential concen-

tration, and modified relative velocity effects) were not

specifically addressed in this work, although they are in

fact included in the model. Preferential concentration

and relative velocity effects, in particular, have been

associated with the efficiency of collision/coalescence

processes (see Wang et al. 2005; Falkovich et al. 2002;

Wilkinson et al. 2006) before they become dominated

by gravity.

The problem considered here clearly deserves further

theoretical, experimental, and numerical insight and

represents a promising challenge for future research. In

particular, the ideas at the basis of this work could be

verified and complemented through laboratory experi-

ments.
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APPENDIX

Renormalization of Droplet Populations

Simulation E is designed to describe a volume of

(100 m)3 with 130 cm23 droplets. A major drawback of

this simulation is that it cannot describe turbulence

structure at the smallest scales, below h 5 25 cm and

th 5 4 s. Also, it cannot follow the individual history of

the correct number of droplets. This might influence the

statistics of vapor fluctuations because the correct

feedback of droplets on the vapor field is not accounted

for. In particular, a concentration of 130 cm23 droplets

yields a total number of particles N* ’ 1014, whereas we

consider the evolution of several million droplets

(Ndrops) because of computational limits. Clearly, 1014

droplets would absorb much more vapor for conden-

sation than a few millions do; thus, an algorithm is

needed to account for this. The simplest way to estimate

the feedback of the whole population on the supersat-

uration field is to normalize ts with a factor Ndrops/N*.

This amounts to considering each droplet as repre-

senting N*/Ndrops equal particles in the same volume

(dx)3, where dx ’ 25 cm.

To evaluate the reliability of this approach, we must

consider the single grid cell. If there is one representa-

tive drop per cell, the algorithm computes the feedback

on vapor as if the average size of droplets in the cell

were exactly the radius of that unique representative.

On the contrary, a volume of (25 cm)3—the grid cell size

in simulation E—should contain several droplets span-

ning a whole size spectrum whose mean value is not

well represented by one single droplet. Of course, a

higher number of particles would better represent the

local mean radius, and we expect the algorithm to

FIG. A1. (left) Supersaturation standard deviation as a function of time. (right) Standard deviation of droplet

radius squared sR2 as a function of time. Results are shown for simulation E, with four different numbers of droplets

Ndrops representative of a population of N* ’ 1014 droplets. The feedback of the whole population on the super-

saturation field is accounted for by renormalizing ts with a factor N*/Ndrops (see text). The algorithm converges when

the number of representative droplets is larger than one per cell.
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converge for density values larger than one droplet per

cell. We test this expectation by repeating simulation E

for a time lag t 5 TL/4, with 0.4, 1, 3, and 6 droplets per

grid cell, corresponding to a total number of Ndrops ’ 7,

17, 50, and 100 million droplets, respectively. Con-

sistently, we use different renormalization factors

N*/Ndrops. On average, the supersaturation phase re-

laxation time scale ts is the same in the four simulations

(not shown), pointing to a correct renormalization.

In the left panel of Fig. A1, the four standard devia-

tions of the supersaturation field are shown in time.

They all start with the same initial value (about

A1wrmsTL ’ 2%; not shown) and relax to a value of the

order of A1wrmsts, with some differences for the dif-

ferent concentrations of representative droplets. These

deviations decrease when the number of representative

droplets increases, showing that the algorithm renorm-

alizing the feedback of droplets on vapor converges.

Consistently, the evolution of the spectral broadening

(shown in the right panel of Fig. 5) tends to collapse to a

unique curve when the number of droplets per cell is

larger than one. According to this analysis, we choose to

perform the complete simulation, lasting one large-scale

eddy turnover time, with one and three droplets per cell,

corresponding to a total number of about 17 and 50

million droplets, respectively. The error bar on the final

broadening is estimated from these two runs.
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