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ABSTRACT

Turbulent fluctuations of both velocity and temperature fields, issuing from high-resolution large-eddy
simulations, have been analyzed in convective boundary layers. The numerically simulated flows are
strongly anisotropic at large scales: this is due both to the action of buoyancy and to the imposed geostrophic
wind. Their relative weight is varied so that one experiment’s results are much more convective than the
other. To properly disentangle anisotropic properties, the authors exploit both standard statistical indica-
tors, like skewness coefficients, and the three-dimensional rotational group decomposition SO(3). Two main
conclusions can be drawn. First, despite the strong anisotropies at large scales, isotropy is statistically
recovered at scales much smaller than the large ones. Second, relevant statistical indicators of turbulence
such as the scaling exponents, of both velocity and temperature fields, are remarkably close for the two
experiments. Implications of these findings for the problem of subgrid-scale modeling are discussed.

1. Introduction

The concept of spatiotemporal fluctuation is prob-
ably the best way to characterize turbulent atmospheric
systems. Such fluctuations are triggered by external fea-
tures like boundaries, imposed mean flows or large-
scale gradients. Physical driving mechanisms, in natural
phenomena or in laboratory experiments, often gener-
ate large-scale turbulent fluctuations that are strongly
anisotropic and highly nonuniversal. The latter prop-
erty reflects the enormous variety of external features
able to generate turbulent flows.

In spite of this complexity, turbulent fluctuations, at
scales much smaller than those at which turbulence is
created, are believed to be statistically isotropic and, to
a certain degree, universal. In particular, scaling expo-
nents characterizing statistical objects are believed to

be universal, that is, almost independent of the details
of large-scale mechanisms driving turbulent fluctua-
tions. This is the framework of the well-known Kol-
mogorov (1941) theory of turbulence [see, e.g., Frisch
(1995) for a modern presentation]. To which extent tur-
bulent fluctuations share the universality and isotropy
properties has been a central matter of research for the
last 10 years (see, e.g., Sreenivasan and Antonia 1997;
Shraiman and Siggia 2000; Falkovich et al. 2001; Min-
nini et al. 2006). Understanding the above aspects has
relevant consequences in applications related, for ex-
ample, to the small-scale subgrid (SGS) parameteriza-
tions adopted in large-eddy simulations (LES). Indeed,
modern approaches to closure problems commonly use
isotropic scaling exponents as the basic ingredients to
build subgrid-scale models. The best examples are the
fractal (Scotti and Meneveau 1997) and multifractal
(Basu et al. 2004) interpolation schemes. When apply-
ing these closures to realistic coarse-grained models of
turbulence, both the universality and isotropy recovery
issues are of primary importance. Furthermore, the
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eddy-viscosity concept at the base of many SGS models
is intrinsically isotropic, thus supposing that anisotropic
fluctuations vanish at the filter scale. Thus the question
arises if anisotropic fluctuations are sufficiently weak at
the cutoff scale that we can condense their importance in
terms of simple coefficients, or eventually neglect them.

Let us be more precise and briefly anticipate some
of the results discussed at length in the sequel. We
define the potential temperature structure functions
as S ( p,�)(x, r) � � [�(x � r) � �(x)]p �, and the veloc-
ity longitudinal structure functions as S ( p,u)(x, r) �
�{[u(x � r) � u(x)] · r̂}p�. These are moments of tem-
perature or velocity increments measured over a dis-
tance r. At this stage, for simplicity, we can refer to
them by using S ( p)(x, r), where the field under investi-
gation can be either the temperature or the velocity.
For a very large Reynolds number and in a range of
scales r well separated from the injection and the dis-
sipative scales, in the so-called inertial range, the struc-
ture functions S ( p)(x, r) are expected to behave as
power laws. This is the essential assumption of any
phenomenological turbulence theory à la Kolmogorov
(1941). The simplest situation is that of a homogeneous
and isotropic system, where

S �p��x, r� � S �p��r� � c0r � p
�iso�

, �1�

c0 being a constant that depends on the details of the
large-scale forcing mechanisms. Independently of the
mean flow or mean temperature profile, the exponents
	 (iso)

p fully characterize the statistical behavior of tur-
bulent fluctuations in the inertial range. They are also
the basic ingredients of the multifractal interpolation
schemes (Basu et al. 2004) and the associated SGS
modeling.

The important question we address in the present
paper concerns the modification (if any) of the turbu-
lent statistics and in particular of the scaling properties
(1), focusing on the role of anisotropy, while leaving
aside the effects due to inhomogeneity. The interplay
between inhomogeneities and anisotropies is a further
source of difficulties and its investigation will be left for
future studies.

The presence of anisotropy clearly induces a depen-
dence on the direction r, and any statistical observable
need to be properly defined. A very simple way to pro-
ceed, avoiding technicalities, is to think of the generic
structure function S ( p)(r) as decomposed into different
contributions due to the isotropic and anisotropic fluc-
tuations:

S�p��r� 
 c0r � p
�iso�

� c1r � p
�aniso1�

� · · · , �2�

where the first term is the isotropic contribution to the
structure function, the second term is the first of the

anisotropic contributions, and so on. In (2), c1 is a con-
stant too. Details on this expansion will be given in
section 5. Even if the expression (2) is very crude, it is
clear that if the anisotropic contributions are compara-
tively negligible with respect to the isotropic one, we
can say that isotropy is statistically restored in the in-
ertial range [see Biferale and Procaccia (2005) for a
complete review of anisotropic turbulence and refer-
ences therein]. On the contrary, if these terms happen
to be of the same order or larger than the isotropic

term, that is, A(r) � c1r � p
�aniso1�

/c0r � p
�iso�

k 1, then the
inertial range statistics would be anisotropic at any
scale, a fact that we could not neglect when deriving
models and closures. It is also clear the relevance of this
issue for the SGS modeling. Indeed, if isotropy was
statistically restored then the classical multifractal in-
terpolation schemes (Basu et al. 2004) should be appli-
cable to construct SGS models. On the contrary, a new
strategy able to incorporate anisotropic corrections
should be implemented.

Let us assume that isotropy is restored in some range
of scales: we conventionally refer to these as inertial
range scales to distinguish them from the large ones
where turbulence is generated, and from those affected
by the SGS closures. A related question is that of the
possible dependence of the (leading) isotropic scaling
exponents appearing in (2) on the degree of convection.
This is the universality problem, here in terms of the
different degree of convection, crucial to understand
how much some statistical properties, as for example
the scaling exponents, are representative of different
turbulent systems (Sreenivasan and Antonia 1997). In
terms of SGS parameterizations, this amounts to un-
derstanding whether or not a given multifractal inter-
polation scheme is universal and thus valid for different
experimental conditions.

The main aim of the present paper is to contribute to
the understanding of both questions, that is, the char-
acterization of the turbulent statistics in an anisotropic
situation and its dependence on the imposed degree of
convection.

To do so, we consider two LES studies of the plan-
etary boundary layer (PBL), characterized by different
degrees of convection. In both situations, the system is
strongly anisotropic because of the combined effects of
the buoyancy force and of the shear. We analyze the
statistics of the velocity and temperature fields, first
considering the behavior of classical statistical observ-
ables such as the skewness factor and the probability
density functions (PDFs) of turbulent fluctuations mea-
sured along different spatial directions. While giving
qualitative indications on the properties of the systems,
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this analysis is not sufficient when considering the iso-
tropy and the universality issues. A new statistical tool
borrowed from the theoretical physics domain is then
introduced: it is three-dimensional rotational group de-
composition, which can properly disentangle the isotro-
pic from the anisotropic turbulent fluctuations (Arad et
al. 1999a). Previously, it has been fruitfully applied to
study anisotropic systems in analytical, numerical, and
experimental works (Arad et al. 1999b; Biferale and
Procaccia 2005). Recently, Hofbauer et al. (2005) have
used the SO(3) decomposition to test the performances
of a variety of SGS models, and check how these re-
produce the isotropic and anisotropic fluctuations of
the turbulent velocity field.

Thanks to the application of the SO(3) decomposi-
tion, new information can be extracted about the tur-
bulent fluctuations in PBLs also. The results that we
obtained clearly point in favor of the isotropy restora-
tion within the mixed layer. On the other hand, as we
will see, things are not as conclusive about the univer-
sality of inertial range turbulence statistics, that is, its
independence of the conditions at large scales.

The paper is organized as follows: section 2 is de-
voted to reviewing the large-eddy simulation strategy.
In section 3, we present the numerical studies, while in
section 4 we show some results in terms of what we
called classical observables. In section 5, the SO(3) de-
composition is introduced and applied to the LES data.
Sensitivity tests comparing experiments at two different
resolutions are described in section 6. Final remarks are
left to section 7.

2. The large-eddy simulation model
The PBL dynamics are described, in our model, in

terms of the Navier–Stokes equations coupled, via the
Boussinesq term, with the evolution equation of the
potential temperature �(x). The huge range of spatial
and time scales involved makes the direct numerical
simulation a very difficult task. In a large-eddy simula-
tion, only the motion associated with the largest turbu-
lent eddies is explicitly solved, while the small-scale
dynamics, partly belonging to the inertial range of
scales, is described in a statistical consistent way. In
other words, small-scale dynamics is parameterized in
terms of the resolved, large-scale velocity and tempera-
ture fields.

This is done applying a low-pass filter to the govern-
ing equations for the velocity and potential tempera-
ture. As an example, such a filter applied to the ith
component of the velocity field, ui, (u1 
 u, u2 
 �,
u3 
 w), is defined by the convolution:

ui�x� 
 �ui�x��G�x � x�� dx�, �3�

where ui(x) is the filtered field and G(x) is a three-
dimensional filter function. As in Moeng (1984), a
Gaussian filter is applied in the horizontal direction. In
the vertical direction, the use of finite differences is
equivalent to a top-hat filtering, where the top-hat func-
tion would be G � 1/� for points within a distance �
and zero outside.

The size of the filter is � 
 2�x, where �x is the
horizontal grid spacing (see Table 1). The field compo-
nent ui can be thus decomposed as

ui 
 ui � u�i, �4�

similarly for the temperature field �. After applying the
filter operator both to the equations for the velocity
and for the potential temperature, and exploiting a de-
composition of the form (4) for the advection terms, we
obtain the following filtered equations:

�ui

�t

�

�uiuj

�xj
�

�� ij
�u�

�xj
�

1
�

�p

�xi
� gi

�

�0
�i3 � f	ij3uj � 
�2ui,

�5�
�ui

�xi

 0, �6�

��

�t

 �

�ui�

�xi
�

�� i
���

�xi
� ��2�, �7�

TABLE 1. Physical parameters of the two simulated CBLs. Here,
Lx, Ly, and Lz account for the domain extension; �x 
 Lx /NX,
�y 
 Ly /NY, and �z 
 Lz /NZ are the grid mesh spacings in the
x, y, and z coordinates; Q* is the heat flux from the bottom
boundary; Ug is the geostrophic wind; z0 is the roughness length;
zi is the mixed layer depth; Lmo is the Monin–Obukhov length; w*
is the convective velocity scale: w* � [(g/�)Q*zi]

1/3 where g /�0 is
the buoyancy term and �0 is a reference temperature; u* is the
friction velocity; * � zi /w* is the large-scale eddy turnover time;
T is the total simulation time, after the quasi steady state was
reached; tsamp is the sampling time for the velocity and tempera-
ture field Eulerian configurations; � is the estimated Taylor scale;
and Re� is the estimated Taylor scale-based Reynolds number.

Parameters Units Expt 1 Expt 2

Lx, Ly (km) 12 12
Lz (km) 2.5 2.5
�x, �y (m) �47 �47
�z (m) �10 �10
Q* (m K s�1) 0.24 0.24
Ug (m s�1) 18.0 3.6
z0 (m) 0.16 0.16
zi (m) 1800 1850
Lmo (m) �340 �11
�zi /Lmo 5.3 164
w* (m s�1) 2.4 2.4
u* (m s�1) 1.0 0.3
* (s) 750 770
T (s) �20* �20T*
� (cm) 29 29
Re� 28 000 23 000
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where � is the air density, p is the pressure, f is the
Coriolis parameter, � is the molecular viscosity, � is the
thermal molecular diffusivity, gi(�/�0)�i3 is the buoy-
ancy term, and �0 is a reference temperature. The quan-
tities to be modeled in terms of large-scale fields are

� ij
�u� 
 Rij � Rkk�ij 3, � i

��� 
 �u�i � ��ui � ��ui�,

�8�

where

Rij 
 uiu�j � u�i uj � u�j u�j. �9�

Expressions (8) represent the subgrid-scale fluxes of
momentum and heat, respectively. The following small-
scale closures are adopted

� i
��� 
 �KH�i�, �10�

� ij
�u� 
 �2�KMSij � SK�M�Sij�. �11�

In the first equation, KH is the eddy diffusivity for the
scalar �. In the second equation, Sij 
 1/2(�iuj � �jui) is
the strain tensor of the resolved field; KM and K�M are
respectively the fluctuating and the mean-field eddy
viscosity, and � is the so-called isotropy factor. In ad-
dition to the filtered equations for the temperature �(x)
and the velocity field u(x), the LES code also solves the
evolution equation for the SGS turbulent kinetic en-
ergy (Moeng 1984; Sullivan et al. 1994). For details we
refer to Sullivan et al. (1994), where the two-part eddy
viscosity model (11), has been introduced. Such closure
permits to reach a better agreement between the mean
wind and temperature profiles obtained in a LES, and
their forms derived from similarity theory in the con-
vective boundary layer (CBL). Moreover, it has been
widely tested and employed to investigate basic re-
search problems in the framework of boundary layer
flows (see Moeng and Sullivan 1994; Antonelli et al.
2003, among others). The LES numerical code used for
this work is from the National Center for Atmospheric
Research (NCAR), plus minor modifications to per-
form online and offline statistical analysis.

3. Numerical experiments

For the present study, we have performed two con-
vective experiments characterized by different ratios
between the buoyancy and the shear production terms.
The physical parameters are listed in Table 1. As is well
known, the stability parameter � 
 �zi /Lmo, where zi is
the mixed layer height and Lmo is the Monin–Obukhov
length, provides a measure of the atmospheric stability.
According to Deardorff (1972), a convective regime
settles in if � � 4.5. From the values reported in Table
1, experiment 2 with � 
 164 corresponds to a pure

buoyancy dominated regime; experiment 1, with � 

5.3, while still being in a convective regime, is also af-
fected by a relatively small shear.

We mention that our experiment 1 has a degree of
convection in between experiment B and experiment
SB1 described by Moeng and Sullivan (1994). Our ex-
periment 2 is similar to experiment 1 by Nieuwstad and
Brost (1986): but, differing from theirs, which is a de-
caying experiment, we maintain a constant heat flux
from the bottom boundary for the entire duration of
the simulation. A quasi steady state is thus reached in
our experiments.

It is worth observing that the application of the LES
strategy is very robust in convective situations, as the
present cases. On the contrary, it may become ques-
tionable in stratified boundary layers where turbulence
can attain scales small in comparison to the filter
length-scale � (Mason 1994).

The numerical simulations have been performed on a
homogeneously spaced NX � NY � NZ 
 2563 cubic
lattice, biperiodic in the horizontal plane. The code is
pseudospectral in the xy plane, and it is discretized with
finite differences in the vertical direction (first-order
discretization); time integration is performed using a
third-order Runge–Kutta algorithm (Spalart et al.
1991). Runs have been performed on an IBM-SP4 par-
allel computer at the Italian interuniversity consortium
CINECA, using 16 processors for a total duration of
about 150 hours per process for each experiment.

After a time t0 � 8*, where * is the large-scale
eddy turnover time since the beginning of the simula-
tion, the systems reached a well-defined quasi steady
state. In Fig. 1, we can see the evolution of the mixed
layer for t � t0. The quasi steady state is defined from
the linear rate of growth of the temperature field inside
the mixed layer, shown in Fig. 2. Another proof of quasi
stationarity is given by the behavior of the temperature
flux �w����, averaged in the horizontal plane and for a
duration time of �*, which shows the expected profile
with the height (plotted in Fig. 3). Vertical profiles of
the wind speed are also given in Fig. 4.

All the forthcoming analysis has been carried out
within the mixed layer, collecting data for t � t0. The
total time of the simulation T, which does not include
the transient, and the sampling time tsamp are also listed
in Table 1. In both experiments, the inertial range ex-
tension is about 0.015 � r/L � 0.12, L being the side of
the numerical domain, that is, twice the integral scale of
the system (see sections 4a and 4b). It corresponds to a
range of about 5–6 to 30 mesh spacings for both the
velocity and temperature fields.

Different from what happens in the horizontal plane,
statistics in the vertical plane are not everywhere ho-

JULY 2007 A N T O N E L L I E T A L . 2645



mogeneous because of the boundaries. It is thus neces-
sary to restrict our attention to the region where the
mixing is such that the turbulent fields can be consid-
ered almost homogeneous. From the mean tempera-
ture profile, such sublayer approximately extends from
h 
 390 m to h 
 1270 m: here deviations from the
mean temperature, measured at the center of the mixed
layer, were smaller than 0.1%.

4. Anisotropic behavior of small-scale fluctuations:
Standard analysis

The atmospheric boundary layer is affected by strong
inhomogeneities coupled with strong anisotropies, due

to the external mechanisms driving the turbulence and
to the presence of the boundaries. Concerning the issue
of isotropy restoration in the inertial range, the situa-
tion is the following: a large number of experimental
and numerical studies, performed in the last fifteen
years, indicated that anisotropy might persist, in con-
trast with the classical picture of local statistical isot-
ropy and universality of inertial range turbulence
(Pumir and Shraiman 1995; Warhaft 2000). For ex-
ample, it has been commonly observed that increment
skewness factors [defined in (12)] do not really de-
crease and eventually increase with the scale |r |, as this
becomes smaller and smaller compared to the large
scale of the system L (see Sreenivasan and Antonia

FIG. 2. Time evolution of the mean potential temperature at a specific height h0 �976 m, well inside the mixed
layer, after the quasi steady state has been reached. Time is expressed in large-eddy turnover time * units.
Temperature is expressed in K.

FIG. 1. Vertical profiles of the mean potential temperature for both experiments. Temperature is expressed in K.
The curves, equispaced in time of about 4*, give the evolution of the potential temperature during the numerical
simulation, after the quasi steady state was reached. The left y axis of each plot is expressed in dimensionless units
z/zi; the rightmost y axis gives the vertical extension of the physical domain, expressed in m.
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1997; Shen and Warhaft 2000). A deeper compre-
hension of these puzzling results has been recently
achieved, when it has been recognized that the persis-
tence of anisotropies is due to the simultaneous pres-
ence of intermittency and anisotropic effects (see, e.g.,
Biferale and Vergassola 2001). Since intermittency
makes anisotropic fluctuations decay slower than what
predicted by dimensional analysis, we can measure
some anisotropic observables which do not vanish go-
ing at smaller scales, or at increasing Reynolds number.
However, if the two effects are properly disentangled, it
becomes clear that anisotropic fluctuations are sublead-
ing, or subdominant, with respect to isotropic ones. The
common understanding is thus that isotropy is statisti-
cally recovered, at scales well separated from the large
ones and the boundaries.

This is confirmed by in situ experiments also. Experi-
mental PBL measurements performed in nearly neutral
conditions and at a microscale Reynolds number Re�
�10 000, have shown that the velocity field (Kurien et
al. 2000), and the temperature field (Kurien et al. 2001),
while affected by strong anisotropies on the outer scales
of turbulence, possess a trend toward isotropy with de-
creasing scales. Such trend differs from that expected
by classical (Kolmogorov theory) dimensional argu-
ments, and the reported persistence of anisotropies is
due to the presence of intermittency. Kolmogorov isot-
ropy restoration hypothesis—slightly modified because
of intermittency—finds an experimental confirmation.

Similar questions can be asked in the LES frame-
work. In section 5, the notion of isotropy restoration
will be clearly stated. Here, we start by a general de-
scription of temperature and velocity field statistics,
trying to identify the anisotropic and intermittency
properties of turbulent fluctuations.

a. Temperature statistics

For both experiments, we look at the probability
density functions P[�r �(x)] of scalar differences,

�r��x� � ��x � r� � ��x�,

at scale r. Temperature fluctuations depend on the kind
and on the intensity of the external forcing mecha-
nisms. For linear systems (Shraiman and Siggia 2000;
Falkovich et al. 2001), the existence of universal scaling
exponents, together with PDFs with nonuniversal
shapes, have been shown. Whether such findings are
valid also in nonlinear systems, such as for example the
CBL, is still an open problem.

In Fig. 5, we consider the PDFs P(�r�), normalized
with their variance, at four different scales r/L spanning
the inertial subrange. The vector r is chosen in the hori-
zontal plane, where the field is homogeneous, and we

FIG. 4. Comparison of the vertical profile of the wind speed for
both experiments. The wind speed is expressed in m s�1.

FIG. 3. Vertical profile of the heat flux for both experiments.
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can thus disregard the x dependence. As expected, the
PDFs of the two experiments have different shapes,
since they have to match different large-scale condi-
tions. Within each experiment, we notice that as the
scale r/L decreases, the curves possess broader and
broader tails, but they seem only slightly asymmetric.
The curves are significantly super Gaussian, exhibiting
nonnegligible fluctuations as large as �8�10 root-
mean-square (rms) values. In addition, the curves even
if rescaled with their variance do not collapse, which is
evidence that the two experiments are both strongly
intermittent (Frisch 1995). The same analysis can be
repeated considering temperature increments mea-
sured in the vertical plane yz, normal to the mean flow,
in the subregion where the influence of the inhomoge-
neity is not too strong (as discussed in the previous
section). As it is evident from Fig. 6, the PDFs now
exhibit a much higher degree of asymmetry for both
experiments. In Fig. 7, we plot the behavior of the in-
crement kurtosis K�(x, r) � �[�r�(x)]4�/�[�r�(x)]2�2, de-
fined in terms of the structure functions S (p,�)(x, r) �
�[�r�(x)]p�. Here we consider only the structure func-
tions measured in the horizontal plane, along the direc-
tion at 45°.1 The inertial range, delimited by the vertical
lines in the figure, extends from r/L �0.015 to r/L
�0.12. The kurtosis, even at large scales where it satu-
rates to a constant, is very far from the Gaussian value

�3. The scale dependence of K�(r), together with its
deviation from the Gaussian value even at large scales,
is another indication that the temperature field is inter-
mittent, but we see no big differences from one experi-
ment to the other.

The anisotropic properties of the temperature field
can be conveniently quantified in terms of the behavior
of the odd-order structure functions S (2p�1,�)(x, r). In-
deed, for an isotropic scalar field, the PDF should be
symmetric; equivalently, odd order moments should be
identically zero. We consider the quantities defined as

��2p�1�
�

�x, r� �
S �2p�1,� ��x, r�

�S�2,� ��x, r���2p�1�2 . �12�

1 Following Celani et al. (2001), this choice is done to reduce the
anisotropic effects in the horizontal plane. In particular structure
functions S (p)(r) � �[�(x � r) � �(x)]p� are measured by choosing
the increment vector r in the horizontal plane and oriented along
the diagonal such that r̂ 
 (�1, �1, 0).

FIG. 7. Log–log plot of the potential temperature field incre-
ment kurtosis K�(r) 
 �(�r�)4�/�(�r�)2�2, calculated in the horizon-
tal plane xy. The vertical lines delimit the inertial range extension,
defined in section 3.

FIG. 5. PDFs of the potential temperature field increment
P(�r�), normalized with their standard deviations, for both experi-
ments. Temperature increments are measured in the horizontal
plane xy, at four different scales: r/L 
 0.02, r/L 
 0.04, r/L 

0.06, and r/L 
 0.1. Inner curves refer to larger scale r/L ratios. At
the largest scales (not shown), the PDF has super-Gaussian tails.

FIG. 6. PDFs of potential temperature increment P(�r�) mea-
sured in the vertical plane yz, normalized with their standard
deviations. The curves (from outer to inner) refer to increments
measured at four different scales: r/L 
 0.06, r/L 
 0.1, r/L 
 0.14
and r/L 
 0.18.
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For p 
 1 and p 
 2, they are the increment skewness
and hyperskewness coefficients, respectively. By local
isotropy hypothesis, these are expected to be zero for
small |r |/L or to decrease rapidly with diminishing scale
in the inertial subrange. Our measurements, in agree-
ment with numerical (Pumir and Shraiman 1995) and
experimental results (see Kurien et al. 2001; Warhaft
2000, for a recent review), show that the skewness co-
efficients essentially remain O(1), almost independent
of the scale separation (see Fig. 8).

As long as we consider low-order moments, as for the
kurtosis before, there are no evident differences be-
tween experiment 1 and 2. Differences appear when
we measure large fluctuations, like those associated
with the hyperskewness S (5,�)/(S (2,�))5/2. Also we no-
tice that the hyperskewness coefficients tend to in-
crease for small r/L, another effect due to intermit-
tency. How to disentangle anisotropy and intermit-
tency, by means of the SO(3) decomposition, will be the
subject of section 5.

b. Velocity statistics

We apply the previous analysis to the velocity field,
also. As before, we separate the measurements in lon-
gitudinal horizontal increments �ruxy � [u(x � r) �
u(x)] · r̂, with r̂ belonging to the xy plane, and in longi-
tudinal vertical increments �ruyz where r̂ is taken in the
vertical yz plane. In Figs. 9 and 10, the PDFs of hori-
zontal and vertical velocity increments are shown: these
change shapes when changing the large-scale conditions
(experiment 1 or experiment 2). But, unlike the tem-
perature case, there are no big differences between the
horizontal and vertical plane statistics. As it is known
from many experimental and numerical results (see

Sreenivasan and Antonia 1997), the velocity field is less
intermittent than the temperature field. This observa-
tion is valid in our case also, since we have that for both
experiments the velocity increment PDFs become al-
most Gaussian at large separations. In addition, they
appear more symmetric than those of the temperature
field. The lower intermittency and the tendency toward
a Gaussian distribution at large scale is confirmed by
the behavior of the increment kurtosis measured in the
horizontal plane, plotted in Fig. 11, which clearly satu-
rates to the value 3 for large scales. As in Fig. 7, the
inertial range is delimited by the vertical lines and ex-
tends from r/L �0.015 to r/L �0.12.

Odd order moments, measured in the horizontal
plane, are plotted in Fig. 12. Two observations are in
order. The first is that also for the velocity field the
increment skewnesses �u

3(r) essentially remain O(1), al-
most independent of the scale separation. The second is
that, as quantified by the value of the �u

3(r) and �u
5(r)

coefficients, the velocity field appear to be less aniso-
tropic than the potential temperature field.

From a qualitative point of view, the two experi-
ments characterized by a different degree of convection
exhibit similar scaling properties for the kurtosis or the
skewness factors, either for the velocity and the tem-
perature fields. Still, it is difficult to comment on the
universality and the isotropy issues, mainly because in
the previous analysis intermittency and anisotropic ef-
fects are mixed together.

5. How to disentangle anisotropic contributions:
The SO(3) decomposition

The importance of properly disentangling isotropic
and anisotropic fluctuations has been demonstrated in

FIG. 8. Log–log plot of the potential temperature field incre-
ment skewness ��3(r) 
 �(�r�)3�/�(�r�)2�3/2 (lower curves) and hy-
perskewness ��5(r) 
 �(�r�)5�/�(�r�)2�5/2 (upper curves). Both indi-
cators are calculated in the horizontal plane xy.

FIG. 9. PDFs of velocity increments P(�ruxy) measured in the
horizontal plane, at four different scales: r /L 
 0.02, r /L 
 0.04,
r /L
 0.06, and r /L
 0.1. A normal distribution is also plotted for
comparison (internal dotted curve). At the largest scales, the PDF
approaches a Gaussian distribution.
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the analysis of the statistical properties of inertial range
turbulence in many different contexts (Biferale and
Procaccia 2005). Investigating and developing proper
small scale models for anisotropic turbulence is also a
first-order question appearing in large-eddy simulations
of turbulent flows affected by anisotropic body forces
(see Meneveau and Katz 2000). As firstly highlighted
by Arad et al. (1999a), anisotropy can be studied by
means of a decomposition of the physical observables
onto the irreducible representations of the rotational
symmetry group SO(3). The physical basis of this ap-
proach relies on the observation that anisotropic exter-
nal forcings driving the turbulence should have their
dominant contribution at large scales: inertial range
quantities should then be statistically independent of
them and thus rotationally invariant. In linear systems
of passive transport and in the pure Navier–Stokes
problem, in the presence of large-scale forcing, experi-
mental and numerical results support the validity of this
approach (Biferale and Procaccia 2005). Also, applica-
tions of the SO(3) decomposition reveal that separating
the isotropic behavior from the anisotropic ones clearly
improves the understanding of the inertial range statis-
tical properties and their comparison with classical di-
mensional expectations (see Biferale et al. 2002). Con-
cerning convection problems, the SO(3) decomposition
has been fruitfully applied by Biferale et al. (2003), in a
direct numerical simulation of a homogeneous Ray-
leigh–Bénard cell, and in PBL field experiments on the
available anisotropic fluctuations measured by two an-
emometers (Kurien et al. 2000, 2001).

Here we will not review the theoretical basis and the
technical details of the SO(3) approach. What is of in-

terest for us is to say that we can apply it either to
correlation or structure functions; that is, scale-depen-
dent averaged quantities, to separate the statistical be-
havior of the isotropic fluctuations from the anisotropic
ones. From a practical point of view, we can look at it
as to the most appropriate projection basis for aniso-
tropic observables, making the decomposition sketched
in (2) systematic.

We focus on scalar quantities, such as the tempera-
ture structure functions S ( p,�)(r) and the velocity longi-
tudinal structure functions, S ( p,u)(r), which have a
simple representation [the interested reader can refer
to Arad et al. (1999a) for a thorough description]. Their
decomposition is just

S�p��r� 
 �
j
0

�

�
m
�j

j

S jm
�p��r�Yjm�r̂�, �13�

where the indices ( j, m) of the spherical harmonics
Yjm(r̂) label the total angular momentum and its pro-
jection on a reference axis, respectively. The isotropic
sector, labeled ( j, m) 
 (0, 0), is associated with the
fundamental harmonic Y00(r̂) 
 1/(4�); the degree of
anisotropy increases with j � 0. The spherical harmon-
ics form a complete basis to project three-dimensional
objects. It is worth saying that for the SO(2) rotational
group, that is the decomposition in a d 
 2 space, the
most natural basis would be the set of functions
cos( j ), sin( j ).

The role of the decomposition is, by means of the
appropriate complete basis functions, to disentangle
vector dependent quantities such as S (p)(r), separating
the angular from the pure scaling information, con-
tained in S(p)

jm (r). Focusing on the statistical properties in

FIG. 10. PDFs of velocity increments P(�ruyz) measured in the
vertical plane yz, at four different scales: r/L 
 0.15, r/L 
 0.18,
r/L 
 0.23, and r/L 
 0.27. Inner curves refer to larger r/L ratios.
A normal distribution is also plotted for comparison (internal
dotted curve).

FIG. 11. Log–log plot of the velocity field increment kurtosis
Ku(r) 
 �(�ruxy)4�/�(�ruxy)2�2, calculated in the horizontal plane xy,
from r K L to larger scales. The vertical lines delimit the inertial
range extension.
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the inertial range of scales, we look for a scaling behav-
ior of the form S(p)

jm (r) � cjmr 	
j(p), with a different 	 j(p)

exponent characterizing each anisotropic sector. The
general expectation is that the coefficients cjm should be
strongly dependent on the anisotropic properties of the
large-scale physics, while the values of the scaling ex-
ponents, 	 j(p), should be independent of the large-scale
forcing and/or boundary conditions, thus enjoying a
much higher degree of universality. Such a picture can
be proved on a rigorous basis for the so-called Kraich-
nan models (Kraichnan 1994), that is, linear problems
of passive advection by Gaussian, synthetic velocity
fields [see Falkovich et al. (2001) for a recent review],
but its validity is thought to go beyond this class of
stochastic models and beyond linear problems (Biferale
and Procaccia 2005).

We come to the issue of isotropy restoration. Ex-
pressed in terms of the behavior of the anisotropic pro-
jections, it corresponds to the existence of a hierarchi-
cal organization of the different scaling exponents for
the structure functions S (p)(r) of any order p:

� j
0�p� � � j
1�p� � � j
2�p� � . . . � � j�p�. �14�

Indeed, this means that going to scales r much smaller
than the integral scale L, the pth order structure func-
tion will be dominated by the fluctuation having the
smallest scaling exponent; that is, the isotropic one of
exponent 	j
0(p). Compared to the isotropic fluctua-
tions, the anisotropic ones give subleading (i.e., negli-
gible) contributions for decreasing |r|: the higher is the
order j of the projection, the more subleading is the
correspondent anisotropic fluctuation.

In the case of Kraichnan models, it has been rigor-
ously proved that, in the presence of large-scale aniso-

tropic forcings, a hierarchy like (14) exists and isotropy
is statistically restored in the inertial range (Lanotte
and Mazzino 1999; Arad et al. 2000). Beyond Kraich-
nan models and analytic proofs, similar evidences have
been found experimentally and numerically in realistic
turbulent systems, both for the temperature field
(Biferale et al. 2003), and the velocity field (Biferale et
al. 2002; Kurien et al. 2000). Clearly more results are
needed, but isotropy restoration seems a common fea-
ture of turbulent inertial range statistics.

Below, we will compare the isotropic and the aniso-
tropic projections of the two experiments, and possibly
give an answer to the problems of the universality and
the statistical restoration of isotropy for turbulent
fields.

It is worth recalling that, while we have a systematic
procedure to disentangle anisotropic statistical fluctua-
tions [i.e., the SO(d) decomposition], we do not have a
similar tool for inhomogeneous systems. In the latter
case, no systematic approach is available to identify the
different contributions to the statistics due to inhomo-
geneity. Moreover, close to the boundaries, LES fields
are very sensitive to the SGS modeling. In view of these
considerations, we applied the SO(3) decomposition to
the part of the mixed layer where the z dependency of
statistical observables turns out to be negligible, as dis-
cussed before.

a. Temperature statistics

In Fig. 13, we show the isotropic projections S(p,�)
00 (r)

for the even structure functions of order p 
 2, 4, 6 for

FIG. 12. Log–log plot of the velocity field increment skewness
�u

3(r) 
 �(�ruxy)3�/�(�ruxy)2�3/2 (lower curves) and hyperskewness
�u

5(r) 
 �(�ruxy)5�/�(�ruxy)2�5/2 (upper curves) calculated in the
horizontal plane xy.

FIG. 13. Potential temperature field. Log–log plot of the isotro-
pic projections S(p,�)

00 (r) for the structure functions of order p 
 2,
4, 6, for both experiments. At any order, the curves above (con-
tinuous lines) refer to experiment 1; the curves below (dashed
lines) refer to experiment 2.
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experiments 1 and 2. We did not consider odd order
moments, since these are very noisy due to cancella-
tions.

At large scales, the temperature statistics have to
match with different conditions in the two experiments,
but for smaller scales, we observe that the two curves
have compatible power-law behaviors at each order p.
Identical scaling exponents for the isotropic projections
would mean that the temperature statistics are univer-
sal with respect of the forcing mechanisms. In our case,
we measure differences of the order of the error bars
between the scaling exponents of the experiment 1 and
experiment 2 (in the scaling region, error bars are esti-
mated by extracting the maximal and minimal slope
fitting the expected power-law behavior and are of the
order of 25% of the value of the estimated exponent).
Experiments with a larger inertial range of scales
should be performed to have a precise measure of these
possible small differences. However, within the present
finite-size limits and error bars, these results are con-
sistent with a weak or no dependence, of the isotropic
projections, on the degree of convection.

Concerning anisotropic contributions, we apply the
decomposition (13) to measure the anisotropic projec-
tions of moments of order p 
 2. Those of order p � 2
soon become noisy and thus poorly informative. It is
worth saying that the observed noise is not due to lim-
ited statistics, since the isotropic projections of mo-
ments up to order p
 6 show a very clean behavior, but
rather to the limitation of the interpolation scheme of
the spherical harmonics (see below) and to finite size
effects.

Figures 14 show the behavior of the ratio A�(r) �
S(2,�)

jm (r)/S(2,�)
00 (r), of the most energetic anisotropic pro-

jection, in our case ( jm) 
 (22), to the isotropic one, for
the second-order structure function.

The first point of each curve is not to be considered:
it clearly suffers from the interpolation scheme.2 The
ratio A�(r) is a quantitative indicator of the anisotropy
degree, and accordingly we refer to it as anisotropy
index.

First, we notice that, at any scale, A�(r) ! 1: this
implies that even the most energetic anisotropic fluc-
tuation gives a contribution much smaller than the iso-
tropic one. Second, we notice that, for both experi-
ments, A�(r) is an increasing function of r (except at
large scale, due to the shape of the spherical harmonic

and the large-scale constraint). This means that the
considered anisotropic projection has a higher expo-
nent than the isotropic one, or equivalently that the
anisotropic exponent 	22(2,�) is subleading with respect
to the isotropic one 	00(2,�), for any of the two experi-
ments. This property is actually observed for all the
measured sectors, precisely those labeled by j 
 2 and
j 
 4, with m ∈ [�j; j]. In the same figure, we plot as an
example also the behavior of the ratio S(2,�)

42 (r)/S(2,�)
00 (r).

In the light of the comments made in section 5, the
above results mean that isotropy is recovered in the
inertial range, in agreement with general observations
in PBL field experiments.

b. Velocity statistics

The same analysis can be repeated for the velocity
field. We start by looking at the isotropic components
S(p,u)

00 (r) of the structure functions of order p 
 2, 4, 6,
plotted in Fig. 15. As already mentioned, the velocity
field is known to be much less intermittent than the
temperature field. This amounts to saying that, for any
fixed order p, the statistical convergence of the struc-
ture function is reached sooner for the velocity than for
temperature field. Even if the scaling region is narrow,
the curves for the two experiments show similar scaling
behavior, with no detectable difference at any order p ∈
[2, 6]. This is the fingerprint of universality with respect
to the degree of convection.

Concerning the anisotropic sectors, in Fig. 16, we

2 The extraction of the projections onto the spherical harmon-
ics, S(p)

jm (r), implies the calculus of an integral over a sphere of
radius r. Working on a cubic grid, we have to approximate the
sphere with the nearest cube. Clearly, for smaller radius, we have
fewer grid points to interpolate with.

FIG. 14. Potential temperature field. Log–log plot of the ratio
between an anisotropic projection to the isotropic one S(2,�)

22 (r)/
S(2,�)

00 (r), for both experiments. The same for the ratio S(2,�)
42 (r)/

S(2,�)
00 (r) is also plotted; these curves have been slightly shifted

below for plotting reasons. For each choice of the jm sector, the
curves above (continuous lines) refer to experiment 1; the curves
below (dashed lines) refer to experiment 2.
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plot the anisotropy index Au(r) � S(2,u)
jm (r)/S(2,u)

00 (r) ver-
sus r/L, for the most energetic fluctuation ( jm) 
 (22),
and for the sector ( jm) 
 (42). Conclusions similar to
those of the temperature field can be drawn for the
velocity field, pointing to the statistical isotropy resto-
ration.

6. Sensitivity test at higher resolution

In this section we address the issue of the possible
influence of SGS terms on the obtained results. Two
different tests might be performed for such purpose.
The first consists in performing simulations with differ-
ent closure schemes; the second is to increase the reso-
lution and thus to push at smaller and smaller scales the
effect of SGS modeling. Since we are interested in as-
sessing inertial range properties rather than contrasting
different SGS model, we choose the latter. Further-
more, with an increased resolution we can control other
spurious effects as, for example, finite size effects, to
which we referred previously.

We studied another classical experiment, namely the
well-known experiment B by Moeng and Sullivan
(1994), at two different resolutions: N3 
 2563 (we refer
to it as experiment B256), and N3 
 5123 (experiment
B512). For a detailed description of this case study, the
reader is referred to the above mentioned paper. Here
we only give some of the relevant physical parameters
characterizing the experiment. The domain extension is
Lx 
 Ly 
 5000 m and Lz 
 2000 m; the heat flux from
the bottom boundary is Q* 
 0.24 km s�1; the geo-
strophic wind is Ug 
 10 m s�1; the roughness length is

z0 
 0.16; the mixed layer depth are zi 
 1030 m and
zi 
 1500 m, for experiment B256 and experiment B512,
respectively; the stability parameter is about �zi/Lmo 

18; the convective velocity scale is w* 
 2.0 m s�1; the
friction velocity is u* 
 0.56 m s�1; the large-scale eddy
turnover time, estimated as * � zi /w*, is about 510 s
for the experiment B256 and 750 s for the experiment
B512, respectively.

After a well-defined quasi steady state was reached,
we collected statistics for several large-scale eddy turn-
over times at resolution N 
 2563, and for one large-
scale eddy turnover time for N
 5123. On the SP4-IBM
SP Power4 platform, it took 1 h to advance 1 h of
simulation for the experiment B256. At the higher reso-
lution, such time became around an order of magnitude
larger.

Coming to the results, skewness and hyperskewness
coefficients, �(2p�1)(x, r) with p 
 [1, 2], are compared
at the two resolutions in Figs. 17. For either the poten-
tial temperature field or the velocity field, we do not
observe any significant difference in their inertial range
statistical behavior when changing the resolution.
Again we can improve our understanding by looking at
the turbulent fluctuations with the SO(3) decomposi-
tion. In Fig. 18, we plot the isotropic sector curves for
the second-order structure function. The power-law
behavior of S(2)

00 (r) does not change when increasing
the resolution, for both the potential temperature and
the velocity fields. In Fig. 19 we also show, for both
fields and at the two resolutions, the anisotropy index
A(r) 
 S(2)

jm (r)/S(2)
00 (r), in terms of the most energetic

FIG. 16. Velocity field. Log–log plot of the ratio between an
anisotropic projection to the isotropic one S(2,u)

22 (r)/S(2,u)
00 (r), for

both experiments. The same for the ratio S(2,u)
42 (r)/S(2,u)

00 (r), is
also plotted. As in Fig. 14, the curves above (continuous lines)
refer to experiment 1; the curves below (dashed lines) refer to
experiment 2.

FIG. 15. Velocity field. Log–log plot of the isotropic projections
S(p,u)

00 (r) for the structure functions of order p 
 2, 4, 6. At any
order, the curves above (continuous lines) refer to experiment 1;
the curves below (dashed lines) refer to experiment 2.
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projection ( jm 
 22): similar qualitative behaviors are
observed in experiment B256 and experiment B512.

It is evident that increasing numerical resolution does
not change the inertial range behavior of the consid-
ered structure functions, in particular those of the iso-
tropic projections that by far exhibit the cleanest scal-
ing. These findings corroborate the conclusions drawn
from experiments experiment 1 and experiment 2 in the
previous sections.

The robustness of the results can be actually under-
stood by means of the following simple considerations.
First of all, the uncertainties produced in a large-eddy
simulation model by the SGS terms contaminate the
turbulent fields in regions where small eddies domi-
nate. This happens, for example, near a wall boundary
and in the entrainment zone of the planetary boundary
layer. On the contrary, in regions where energy-con-
taining eddies are well resolved, as within the mixed
layer where the present analysis has been focused, LES
fields are known to be weakly dependent on the par-
ticular SGS scheme. Such dependence becomes even
weaker in the case of convective boundary layers, as
those here investigated, where the subgrid-scale motion

acts as a net energy sink draining energy from the re-
solved motion. In other words, when the energy trans-
fer is dominated by a direct cascade from large toward
the small scales of motion, the cumulative (statistical)
effect of the latter scales can be successfully captured
by means of simple eddy-diffusivity/viscosity SGS mod-
els.

Moreover, we focused on scales of motion always
larger than six or eight grid points; that is, sufficiently
far from the lowest still resolved scales, that (a priori)
might be dependent on parameterization schemes.

7. Conclusions

We have performed two high-resolution (2563) nu-
merical experiments of the CBL dynamics, using the
large-eddy simulation technique. From our observa-
tions, we have clear evidences that isotropy is restored
at inertial range scales for both the temperature and the
velocity fields. Within the mixed layer, anisotropies
seem to be negligible in comparison with the isotropic
contributions. This is further confirmed by the test case,
where results at 2563 are compared with results at 5123,
without any significant discrepancy. We can conclude
that the tendency to recover isotropy in the inertial
range is not due to the subgrid-scale model or to finite
size effects, but seems to be a genuine feature.

Injecting in the systems fluctuations with a different
degree of convection does not seem to play a key role
for the velocity and the temperature fields, whose lead-

FIG. 17. (top) The top curves are the log–log plot of the hyper-
skewness coefficient ��5(r) 
 �(�r�)5�/�(�r�)2�5/2 measured in ex-
periment B256 (*) and experiment B512 (�). The bottom curves
are the log–log plot of the potential temperature increment skew-
ness coefficient ��3(r) 
 �(�r�)3�/�(�r�)2�3/2 measured in experiment
B256 (�) and experiment B512 (�). (bottom) The same but for the
velocity field u, with the identical choice of symbols. Both indi-
cators are calculated in the horizontal plane xy. The vertical lines
define the inertial range extension common to both experiments.

FIG. 18. Log–log plot of the isotropic projections of the struc-
ture functions of order p 
 2 S(p)

00 (r) for the potential temperature
and the velocity fields, measured in the experiments experiment
B256 and experiment B512. For both the temperature and the ve-
locity fields, the curves above refer to the experiment at moderate
resolution 2563; the curves below refer to the experiment at very
high resolution 5123. The vertical lines define the inertial range.
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ing isotropic scaling exponents are only weakly or no
dependent from the large-scale conditions, within the
present error bars.

These results can give fruitful indications when
studying the behavior of statistical observables within
the mixed layer. From our results, it turns out that one
can use the same set of (isotropic) scaling exponents to
construct SGS multifractal parameterizations for atmo-
spheric boundary layer flows having different degree of
convection, since the dependence on large-scale fea-
tures is weak.

Clearly, the relative weight of anisotropic terms, at
the smallest scales (e.g., at those comparable to the
filter size), becomes more and more negligible as the
Reynolds number increases. However even using an
LES with a spatial resolution smaller than the present
one, the anisotropic projections give relatively small
contributions compared to the isotropic terms. This is
true for numerical resolutions larger than a minimum
one, at which isotropic and anisotropic contributions
can eventually reach the same order of magnitude. For
the cases considered in this work, such critical resolu-
tion is quite small. It should be of the order of 643 grid
points, if one accepts as a threshold, for example, on the
second-order structure function, an anisotropic compo-
nent with magnitude equal to the 5% of the isotropic
counterpart. The critical resolution becomes smaller for
lower thresholds.

A problem left open by our work is whether or not
the conclusions drawn for convective boundary layers
can be exported to the case of stably stratified bound-
ary layers also (Andren 1995). In the latter situation,
because of the presence of gravity waves, energy is

transferred toward smaller scales via nonlinear wave–
wave interactions. The final result of these interactions
is that one passes from large-scale disturbances to dis-
turbances at smaller scales, finally dissipated by SGS
terms. The mechanism of energy transfer at work in
wave–wave interactions is completely different from
the energy cascade à la Kolmogorov. Both the univer-
sality picture and the isotropy restoration scenario
could thus disappear in stably stratified boundary lay-
ers.

Another interesting issue to be explored is related to
the possible anisotropy persistence close to the upper/
bottom boundaries. There, scales of motion smaller
than the LES filter size can be generated with the final
result that turbulent fields are, at best, strongly sensi-
tive to the particular subgrid scale model adopted. To-
day, only large Reynolds number experiments can pos-
sibly answer these questions.
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