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The Lagrangian statistics of heavy particles and of fluid tracers transported by a fully developed
turbulent flow are investigated by means of high resolution direct numerical simulations. The
Lagrangian velocity structure functions are measured in a time range spanning about three decades,
from a tenth of the Kolmogorov time scale, ��, up to a few large-scale eddy turnover times. Strong
evidence is obtained that fluid tracer statistics are contaminated in the time range �� �1:10��� by a
bottleneck effect due to vortex filament. This effect is found to be significantly reduced for heavy
particles which are expelled from vortices by inertia. These findings help in clarifying the results of
a recent study by H. Xu et al. �Phys. Rev. Lett. 96, 024503 �2006��, where differences between
experimental and numerical results on scaling properties of fluid tracers were reported.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2338598�
Suspensions of dust, droplets, bubbles, and other finite-
size particles advected by incompressible turbulent flows are
commonly encountered in many natural phenomena and ap-
plied processes ranging from cloud formation to industrial
mixing.1,2 Understanding their statistical properties is thus of
primary importance. From a theoretical point of view, the
problem is more complicated than in the case of fluid tracers
and point-like particles with the same density of the carrier
fluid; inertia is responsible for the appearance of correlations
between the particle positions and the structure of the under-
lying flow. It is well known indeed that heavy particles are
expelled from vortical structures, while light particles tend to
concentrate in their core. This results in the appearance of
strong inhomogeneities in the particle spatial distribution, of-
ten dubbed preferential concentration.3,4 This phenomenon
has recently gathered much attention both from a
theoretical5,6 and a numerical4,7 point of view. Progresses in
the statistical characterization of particle aggregates have
been achieved by studying particles evolving in stochastic
flows5,8,9 and in two-dimensional turbulent flows.10 Concern-
ing single particle statistics, there has been considerably less
attention for heavy particles,11,12 in contrast to the numerous
studies devoted to tracers.13–20 For example, it is known that
Lagrangian velocity structure functions of tracers display
high intermittent statistics,16–18 while there are no results

concerning heavy particles.
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The aim of this Letter is to compare the Lagrangian sta-
tistics of heavy particles with that of fluid tracers evolving in
the same turbulent flow, by means of direct numerical simu-
lations �DNS�. In particular, we shall focus on the Lagrang-
ian structure function of second order, important for stochas-
tic modelling of particle trajectories,21,22 and of higher
orders, to account for intermittency effects. For Lagrangian
studies, DNS offer the possibility of reaching Reynolds num-
bers comparable to experiments, with a full control of both
temporal and spatial properties of a very large number of
tracers and heavy particles.

We consider particles with a mass density �p much larger
than the density � f of the carrier fluid. In this limit, particles
evolve according to 23

dX

dt
= V,

dV

dt
= −

1

�s
�V − u�X�t�,t�� . �1�

X�t� denotes the particle position, V�t� its velocity, u�x , t� is
the fluid velocity, and �s=2�pa2 / �9� f�� is the particle re-
sponse time, where a is the radius and � is the fluid viscosity.
The Stokes number, which quantifies the degree of inertia, is
defined as St=�s /��, where ��= �� /��1/2 is the eddy turnover
time associated with the Kolmogorov scale and � is the av-
erage rate of energy injection. Equation �1� is derived in Ref.
23 under the assumption of very dilute suspensions, where

particle-particle interactions �e.g., collisions� and hydrody-

© 2006 American Institute of Physics2-1

 AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2338598
http://dx.doi.org/10.1063/1.2338598
http://dx.doi.org/10.1063/1.2338598


081702-2 Bec et al. Phys. Fluids 18, 081702 �2006�

D

namic coupling can be neglected. Tracers correspond to the
limit �s→0, i.e., to the evolution dX /dt=u�X�t� , t�.

We performed a series of DNS of homogeneous and iso-
tropic turbulence on a cubic grid with resolutions up to 5123

�reaching a Taylor microscale Reynolds number R��180�
and transporting millions of tracers and particles with
St� �0.16:1�. Particles are initially seeded homogeneously
in space with velocities equal to the local fluid velocity, al-
ready in a stationary configuration. Then they evolve accord-
ing to Eq. �1� for about 2 to 3 large-scale eddy turnover times
before reaching a Lagrangian statistical steady state �see Ref.
24 for a detailed study of the transients�. Once the particle
dynamics has completely relaxed the measurements are
started. Details on the simulation parameters can be found in
previous reports.11,24 For fluid tracers we also present results
obtained with resolution 10243 and R��300; these data are
described in Refs. 17 and 20.

The Lagrangian structure functions �LSF�

S�p���� = ��V�t + �� − V�t��p� , �2�

measure the time variations of any component V of the tracer
or particle velocity. For time lags � in the inertial range �i.e.,
when �����TL, where TL is the integral Lagrangian time
scale�, the LSF of tracers are expected to display power law
behaviors S�p��������p� �see Ref. 16, and references therein�.
A dimensional estimate derived from the Kolmogorov 1941
theory for Eulerian turbulence predicts S�p����� ����p/2.
Considerable deviations from the nonintermittent scaling
��p�= p /2 were observed in both experiments16,18 and
DNS,17,20 with however some disagreement on the actual
values of the exponents. For heavy particles there is not any
reference theory. As the effect of inertia on the velocity sta-
tistics becomes less and less important when increasing
� /�s,

5 we can guess that particles recover the statistical prop-
erties of tracers when ����s���TL.

We report in the sequel numerical measurements of the

LSF of both particles and tracers for time lags ranging from
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�� /10 up to 100�� of the order of the integral time scale TL.
Here we anticipate the main findings. Comparing the statis-
tical properties of tracers and particles, we find further evi-
dence that the formers are strongly affected by vortex trap-
ping well above the Kolmogorov time scale, i.e., in the range
�� �1:10���, while trapping becomes less and less important
at increasing St. Trapping events spoil the scaling properties
for time lags expected to be inside the inertial range of tur-
bulence. This observation explains the disagreement, pointed
out in Ref. 18, existing between the scaling behavior of fluid
tracers LSF measured in experiments14,16 and DNS.17,20 We
argue that this discrepancy stems from the fact that the ex-
perimental LSF scaling exponents are measured in the time
range �3:6���, exactly where trapping is effective. This leads
to more intermittent statistics than that measured in the iner-
tial range.17,20

Figure 1 summarizes the results for the second order
LSF at varying Stokes. It should be noted that it is very
difficult to identify a power-law scaling range for any Stokes
and any time lags. This is evident from the absence of a
plateau in the logarithmic derivatives of the LSF plotted in
the top inset. When trying to compensate the LSF with the
linear dimensional prediction, i.e., S�2���� /� �shown in the
bottom inset of Fig. 1 at varying Stokes� the curves display a
parabolic shape without any plateau. This points out the dif-
ficulty of identifying a clear scaling behavior in the second
order LSF. Still in the bottom inset, it is worth noticing the
strong effects induced by inertia: already for the smallest
Stokes number we considered �St=0.16�, we observe a clear
departure from tracer behavior.

It is now interesting to look for nontrivial effects at
higher-order moments. As customary in turbulence studies,
assessing deviations from a simple dimensional scaling can
be done by comparing all moments against a reference one, a
procedure originally proposed for Eulerian structure func-
tions and dubbed extended self-similarity �ESS�.25 This

FIG. 1. S�2���� vs � /�� in the log-log
scale for tracers ��� and heavy par-
ticles with St=0.16, 0.37, 0.59, 1.01,
and 1.34 �solid lines from top to bot-
tom�. Bottom inset: compensated plot
S�2���� /� vs � /��, same symbols as in
the body. Top inset: logarithmic de-
rivative d log�S�2����� /d log��� vs
� /��, same symbols as in the body.
For each Stokes number, averages in
�2� are performed over N=5	105 tra-
jectories that last for about 200��. All
curves are obtained by averaging over
the three components of the velocity
vector to increase the statistics.
amounts to studying the scaling behavior of the order p LSF
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as a function of that of order 2, used as a reference for
Lagrangian statistics. This procedure is known to decrease
finite-Reynolds effects and is frequently used for measuring
scaling exponents in experiments and simulations. The price
to pay is that only relative scaling exponents ��p� /��2� can
be measured. Figure 2 shows S�p���� as a function of S�2����
for p=4 and p=6 and various values of St. Two observations
can be done. First, the LSF of both inertial particles and
tracers have an inertial-range scaling behavior that deviates
significantly from the dimensional one ��p� /��2�= p /2. Sec-
ond, the differences between tracers and particles around
����, i.e., for S�2������0.1, are now even more pro-
nounced. To be more quantitative in Fig. 3 the local slopes
d log�S�p����� /d log�S�2����� of all curves are shown. Let us
first focus on the behavior well inside the inertial range. For
10��
�
TL, all the data sets display a tendency to con-

FIG. 2. Log-log plot of S�p���� vs S�2���� of order p=4 and p=6 for fluid
tracers ��� and heavy particles with St=0.16, 0.37, 0.59, 1.01, and 1.34
�solid lines from top to bottom�. The two straight lines represent the dimen-
sional nonintermittent scaling ��p� /��2�= p /2. Notice the similarity of heavy
particles for different Stokes and the marked difference of the tracers with
respect to particles for values close to the viscous scale, S�2������0.1 �ver-
tical dotted line�.

FIG. 3. �Color online� Logarithmic derivative of the ESS plots of Fig. 2
Re�=300 are plotted as � and �, respectively. The solid lines refer to heav
line marks the Lagrangian multifractal prediction obtained for tracers in Ref
to the experimental values measured for tracers in Ref. 18 at comparable R

Errors have been estimated from the variations among the three velocity compon
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verge, within error bars, to the same scaling behavior as that
of fluid tracers, irrespective of the value of the Stokes num-
ber. The large error bars are due to unavoidable large-scale
anisotropic fluctuations in the statistics. In the same figure
we also report the intermittent scaling for fluid tracers, as
predicted by the multifractal model17 �see also Refs. 13 and
26�, by translating the well-known Eulerian multifractal
model to the Lagrangian domain. Notice that the inertial-
range behavior is compatible with the multifractal prediction
also for heavy particles.

For time lags in the range �����10��, the local scaling
exponents reveal the presence of a strong bottleneck effect
that is much more pronounced for tracers than particles. At
these time scales, both for p=4 and p=6, fluid tracers have
very intermittent scaling properties that are however
smoothed out as soon as inertia is switched on. This is due to
the fact that tracers �St=0� may experience vortex trapping
lasting for rather long times, while inertial particles �even for
St�1� are expelled from vortex filaments. The values for
the scaling exponents of the LSF given in the experimental
study of fluid tracers in Ref. 18 at comparable Reynolds
numbers are also represented in Fig. 3 in the shaded band. In
Ref. 18, the scaling exponents are measured in the range
�� �2:5��� �see arrows in the figure�, where trapping into
vortex filaments gives the dominant contribution leading to a
more intermittent statistics. For these time lags, the values of
the scaling exponents reported in Ref. 18 are in good agree-
ment with DNS results. However, these exponents substan-
tially differ from the inertial-range values of the logarithmic
derivative that we observe at ��10��.

It is worth stressing that the statistical signature of par-
ticle trapping into vortex filaments has already been the sub-
ject of experimental and numerical studies of fully developed
turbulent flows. In particular, it was shown that such events
play a crucial role in determining the intense fluctuations of
tracer acceleration.14,16,17,27 This effect has previously been
highlighted by filtering out the intense vortical events in the
LSF �see Fig. 3 of Ref. 20 and compare it with Figs. 1 and

�� for p=4 �left� and p=6 �right�. Data for fluid tracers at Re�=180 and
ticles for St=0.16,0.37,0.59,1.01 �from bottom to top�. The dotted straight
�4� /��2�=1.71,��6� /��2�=2.26. The grey �yellow online� band corresponds
lds numbers, and fitted in the range �� �2:5��� �shown with the arrows�.
vs � /
y par
. 17 �
eyno
ents.
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2�. Such a filtering here is obtained dynamically by switch-
ing on inertia, whose major landmark at small values of
the Stokes number is to expel heavy particles from vortex
filaments.

In conclusion, we have shown that for large-enough time
lags ���10��� the scaling properties of heavy particles with
St1 tend to be almost independent of St, within error bars.
The relative scaling exponents of LSF for the investigated
Stokes numbers are found in the range ��4� /��2�
� �1.55:1.75� for the fourth order and ��6� /��2�� �1.8:2.4�
for the sixth one, confirming the presence of anomalous scal-
ing. Investigations at larger Re� are needed to confirm the
robustness of the universality enjoyed by heavy particles for
large time lags. Indeed, it has been pointed out in Ref. 5 that,
for heavy particles advected by rough incompressible flows,
the effect of inertia on the particle velocity should disappear
progressively at large scales. This suggests that for time lags
well inside the inertial range and much larger than the re-
sponse time �s, the delay of the particles with respect to the
fluid motion becomes negligible and a “tracer-like” physics
should be recovered. For the case of fluid tracers, it is im-
portant to be very careful in assessing scaling properties be-
cause trapping into vortex filaments may spoil the inertial
range scaling behavior for time lags up to ��10�� and even
more. Such trapping effects are less effective for heavy par-
ticles due to their dynamical properties that bring them out-
side of strong vortex filaments. These results are important
for stochastic modelling of both tracers and heavy particles,
where the statistical properties of velocity and acceleration
along the trajectories are the main ingredients for developing
appropriate models.
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