CNR National Research Council **NANOTEC Lecce**

Fragmentation processes in turbulent flows

Alessandra S. Lanotte

alessandra.lanotte@gmail.com

With: Matthäus U. Bäbler¹ & Luca Biferale² ¹KTH, Stockholm ²Dept. Physics Univ. Tor Vergata

How many breakup events per unit time ?

From plankton dynamics to nano drugs

- Industrial processing of polymer colloids
- Suspended particulate matter in environmental systems: e.g., marine snow or aerosols
- Dispersion of powder aggregates e.g. inhalation drugs

 Nano-particles for thrombus lysis in blood vessels

Korin et al. Science 2012

Post-stenos

Modeling approach: no easy way out

• SOLVE INTERNAL DEGREES of FREEDOM, & NEGLECT TURBULENT MOTIONS

- Aggregate structure held together by surface forces at intermonomer bonds
- Stokesian Dynamics relating forces, torques and stresslets on each monomer with the flow field through a mobility matrix

- Aggregates moving in **simple laminar flows**

• SOLVE TURBULENT MOTIONS, & NEGLECT INTERNAL D.o.F.

- Flow configurations need to resolve turbulent motions on wide range of scales $\mathbf{Re}_{\lambda} \sim (L/\eta)^{2/3} \# \text{DoF} \sim \mathbf{Re}_{\lambda}^{9/2}$

e.g. if $Re_{\lambda} \sim 400$ you need $\#DoF => N^3 = 2048^3$ grid points

- Small aggregates as point-like "spherical" particles in a creeping flow
- Breakup due to mechanical stress only

Breakup of Finite-Size Colloidal Aggregates

Breakup criteria

- Monitoring breakup events by PTV
- Aggregate strength decreases with increasing aggregate size

$$R_g \sim \sigma_{cr}^{-a}; \ R_g \sim \xi^{1/d_f}$$

Criteria 1: "Slow breakup" Breakup is controlled by slow internal dynamics inside the aggregate, i.e., rearrangement of primary particles. Turbulent fluctuations do not influence breakup.

Criteria 2: "Intermediate breakup:" Breakup requires accumulation of stress.

$$E_{\Delta} = \int_{t_b - \Delta t_b}^{t_b} \varepsilon(t) dt$$

Criteria 3: "Fast or instantaneous breakup" Local stress (local in time and space) controls breakup. Breakup upon crossing a critical threshold

Numerical experiments

- In a turbulent flow, consider aggregates of mass ξ and strength $\sigma_{cr}(\xi)$
- Brittle limit: Aggregate break up when the mechanicalhydrodynamic stress exceeds a critical value σ_{cr}(ξ)
- At time t_0 , release aggregate at random where $\sigma_{\rm F} < \sigma_{\rm cr}$
- $\begin{array}{l} \mbox{Instantaneous break-up when}\\ \mbox{local stress } \sigma_F \mbox{ exceeds critical}\\ \mbox{value } \sigma_F > \sigma_{cr}(\xi) \end{array}$

The time from the release to the break-up is the first **EXIT-TIME** τ The **DIVING TIME** T is the mean time below critical threshold **Breakup rate natural def**.: Lagrangian **measure** from MEAN EXIT-TIME au

V.I. Loginov (1985) + S.O. Rice Theorem for upcrossings events number estimate (1945)

Direct Numerical Simulations of 3D HIT

2048³ points Re_λ ~ 400

- Incompressible, **H**omogeneous and **I**sotropic **T**urblent flow **u**
- Non-linear interaction of "eddies" of scales $\eta \leq r \leq L$
- Flow is controlled by turbulent dissipation $\epsilon = \nu (\partial u_i / \partial x_j)^2$ and Reynolds number \mathbf{Re}_{λ}
- Flow is seeded with 10⁹ non-interacting point-particles
- Tracer Aggregates $R < < \eta$ $\rho_a \sim \rho_f$ $\frac{d\mathbf{X}}{dt} = \mathbf{u}(\mathbf{X}, t)$

• Inertial aggregates R<< η $\rho_a \gg \rho_f$

Fluid

Breakup rate: Lagrangian measure vs Eulerian estimate

Results for <u>TRACERS</u> aggregates subject to shear stress only

 15ν

 $\epsilon_{cr} =$

NOTE: exit-time measure at large stress requires too long trajectories

What if we change flow configurations ?

Channel flow

- $\mathbf{R}_{\tau} = u_{\tau} h / v = 150$
- $(u_{\tau} = \text{shear velocity})$
- Small aggregates released:
- 1. Center-plane
- 2. Near-wall region

Developing boundary layer flow

- $R_{\theta} = U_{\infty}\theta/\nu = 200-2500$ (θ =momentum-loss thickness)
- Small aggregates released:
- 1. Inside the boundary layer
- 2. Outside the boundary layer

- $\operatorname{Re}_{\lambda} \sim 400$
- Small aggregates are released homogenously

Results for tracer aggregates in diff flows

Aggregates with inertia

 Aggregates of size *R*/η = 0.1 and varying density

 $\begin{array}{l} \text{Open} \\ \text{aggregate} \\ \text{Low density} \\ \rho_a > \rho_f \end{array}$

Compact aggregate, high density $\rho_a >> \rho_f$

Breakup rate for inertial aggregates in H.I.T.

Universal power law at small stress: <u>controlled by Gaussian fluctuations</u> Non universal tail at large stress

Summary

MAIN OUTCOME:

An operational definition of breakup rates f for small aggregates diluted in a turbulent flow.

Exit time measure <τ> is a natural one, but requires high Lagrangian sampling & long trajectories.
Diving time estimate <T> is useful when Lagrangian tracking is difficult.

The power-law behaviour of the breakup rate f at small σ_{cr} is ~ universal with respect to flow configurations and aggregates inertia. It is crucial to study breakup/coalescence dynamics via population balance equations.

The exponential tail of the break-up rate for large values of σ_{er} is where rare turbulent fluctuations and inertia play a role

REFS:

- Babler, Biferale, Lanotte, *Phys. Rev. E* (2012)
- De Bona, Lanotte, Vanni, *Journal Fluid Mech* (2014)
- Babler et al., *Journal Fluid Mech* (2015)
- Babler, Biferale, Lanotte, *in preparation (2018)*