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How many breakup events per unit time ?



From plankton dynamics to nano drugs

= Industrial processing of polymer
colloids

= Suspended particulate matter in
environmental systems:
e.g., marine snow or aerosols

= Dispersion of powder aggregates| =

e.g. inhalation drugs HRSEaRSTcse

—— Shear activated
nanotherapeutics

Korin et al.
Science 2012

Post-stenosis

= Nano-particles for thrombus lysis
in blood vessels




Modeling approach: no easy way out

« SOLVE INTERNAL DEGREES of FREEDOM, & NEGLECT TURBULENT MOTIONS
- Aggregate structure held together by surface forces at intermonomer bonds

- Stokesian Dynamics relating forces, torques and stresslets on each monomer with the
flow field through a mobility matrix

- Aggregates moving in simple laminar flows

s laminar flow

F/max(F)

N/max(N)

« SOLVE TURBULENT MOTIONS, & NEGLECT INTERNAL D.o.F.
- Flow configurations need to resolve turbulent motions on

wide range of scales
Re,~(L/m)?3 #DoF ~ Re,”?

e.g. if Re, ~ 400 you need #DoF => N3= 20483 grid points

- Small aggregates as point-like “spherical” particles in a creeping flow
- Breakup due to mechanical stress only




Breakup of Finite-Size Colloidal Aggregates

Aggregates:
de = 2.2
Size = 1.4 mm

120 mm

Tracers for PTV:
Neutrally buoyant
Size = 0.1 mm

Schematic dra wing
of a disk with 6 baffles

Flow forcing: eight counter rotating disks _ :
Operating at 100 rpm Observation domain,
Tank : 420 mm x 420 mm x 440 mm 30mm x 30mm x 40 mm
Camera 7Khz, 1024x1024 px
U ns L M € Re; T, Shear rate  images/t,
0.04 ms! 25mm 0.15 mm 1.9¢-3 117 0.023 s 44 g1 6s!
mZS—3

Aggrégate breaks int
.
it

w large fragments

"% s nps RO GBI : Saha et al. Langmuir 2016,
o e GRS . "i:—i;lmw"!u‘ are agdvecie 32/ 55—65

a specific'mement in time :
r ' ; N turbulent flow




Breakup criteria

= Monitoring breakup events by PTV

= Aggregate strength decreases with increasing aggregate size
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Criteria 1: "Slow breakup”

Breakup is controlled by slow
internal dynamics inside the
aggregate, i.e., rearrangement of
primary particles. Turbulent
fluctuations do not influence
breakup.
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Criteria 2: "Intermediate

breakup:” Breakup requires
accumulation of stress.
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Criteria 3: "Fast or

instantaneous breakup”

Local stress (local in time and
space) controls breakup. Breakup
upon crossing a critical threshold



Numerical experiments

= In a turbulent flow, consider
aggregates of mass & and

strength o.(§) o |

= PBrittle limit: Aggregate break up
when the mechanical-

hydrodynamic stress exceeds a
critical value o.(§)

= At time t,, release aggregate at

random where 6 < G,

= Instantaneous break-up when EXIT-TIME T DIVING TIME [’
local stress oy exceeds critical

value g > G,.(&)

The time from the release to the break-up is the first EXIT-TIME Tt
The DIVING TIME T is the mean time below critical threshold



Breakup rate natural def.: Lagrangian measure from MEAN EXIT-TIME T
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Breakup rate estimate: A proxy in terms oft the MEAN DIVING TIME T
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V.I. Loginov (1985) + S.0O. Rice Theorem for upcrossings events number estimate (1945)



Direct Numerical Simulations of 3D HIT

« Incompressible, Homogeneous and Isotropic Turblent flow u

« Non-linear interaction of “eddies” of scales n <r <L

T
= + Flow is controlled by turbulent dissipation € = v(du;/0x;)?
L and Reynolds number Re,
20483 points « Flow is seeded with 10° non-interacting point-particles
Re, ~ 400
* Tracer Aggregates |
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Breakup rate:

Lagrangian measure vs Eulerian estimate

15v
Results for TRACERS aggregates subject to shear stress only €., = 02

e = v(Ou;/0x;)? 2u?

102 | 1/< T> EX|t tlme measure

1/<T> : Diving t|me estimate

103 1072 107 10° 10° 102
£orl<e>
NOTE: exit-time measure at large stress requires too long trajectories



What if we change flow configurations ?

Channel flow

2h

47h
" R.=uh/v=150
(u, = shear velocity)

= Small aggregates
released:

1. Center-plane

2. Near-wall region

2rth

Developing boundary
layer flow

U
o

3%\9/@

Z

= R,=U,A0v=200-2500
(6=momentum-loss thickness)

= Small aggregates released:
1. Inside the boundary layer

2. Outside the boundary layer

H.I.T.

Re)\ ~ 400

Small
aggregates
are released
homogenously



Results for tracer aggregates in diff flows
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Aggregates with inertia 2% 3ulu—V

= Aggregates of

size R/n=0.1
and varying density
&
Open a
aggregate
Low density
pa> Pr
00r ® _
Compact . 1071
aggregate, 2 10
high density
Pa>> pr 10T
107

0./00, 05t/00, Trot/ 00



Breakup rate for inertial aggregates in H.I.T.

= Aggregates of

size R/n=0.1 10° ”ll;raiezs St=0.16t ] ;
and varying density < / =10

., Open ,
] ' aggregate 1o r
/ Low density
_________ S
LS107F
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Universal power law at small stress: controlled by Gaussian fluctuations
Non universal tail at large stress




Summary K\@Q

~S @805
MAIN OUTCOME: \ T @)
An operational definition of breakup rates f for small aggregates diluted
in a turbulent flow.

Exit time measure <T> is a natural one, but requires high Lagrangian sampling &

long trajectories.
Diving time estimate <T> is useful when Lagrangian tracking is difficult.

The power-law behaviour of the breakup rate f at small o, is ~ universal
with respect to flow configurations and aggregates inertia.
It is crucial to study breakup/coalescence dynamics via population balance equations.

The exponential tail of the break-up rate for large values of o.is where rare
turbulent fluctuations and inertia play a role
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