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ABSTRACT

The similarities of quantum turbulence with classical hydrodynamics allow quantum fluids to provide essential models of their classical analog,
paving the way for fundamental advances in physics and technology. Recently, experiments on 2D quantum turbulence observed the clustering of
same-sign vortices in strong analogy with the inverse energy cascade of classical fluids. However, self-similarity of the turbulent flow, a fundamen-
tal concept in the study of classical turbulence, has so far remained largely unexplored in quantum systems. Here, thanks to the unique features of
exciton–polaritons, we measure the scale invariance of velocity circulations and show that the cascade process follows the universal scaling of criti-
cal phenomena in 2D. We demonstrate this behavior from the statistical analysis of the experimentally measured incompressible velocity field and
the microscopic imaging of the quantum fluid. These results can find wide application in both quantum and classical 2D turbulence.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167655

I. INTRODUCTION

Turbulent dynamics in classical fluids has been first identified
by A. N. Kolmogorov with the presence of a self-similar energy cas-
cade. Self-similarity, or scale invariance, refers to the statistically
identical behavior of the velocity fluctuations after scale transfor-
mations. In three dimensions (3D), the existence of non-zero
energy dissipation even in the limit of zero viscosity implies a direct
energy cascade from a large injection scale toward smaller spatial
scales.1 Turbulent energy cascades are the hallmark of far-from-
equilibrium statistical behavior since energy injected in the system
never attains equipartition. Instead, the non-linear energy transfer
is irreversible, meaning that it has a preferred direction: when such
transfer goes on average from large toward smaller eddies, it is
defined as direct, and this is the case of kinetic energy in incom-
pressible three-dimensional classical fluids. In two dimensions
(2D), the picture is different due to the existence, in addition to
kinetic energy, of another integral of motion given by enstrophy,
i.e., the mean squared vorticity. Since kinetic energy and enstrophy
cannot cascade in the same direction, a different scenario emerges:
while enstrophy undergoes a direct cascade from the injection scale
toward smaller scales, the kinetic energy does the opposite and

flows on average from the scale of injection toward larger spatial
structures, in a process called inverse energy cascade.2,3

A subtler consequence of the direction of the cascade concerns
the presence of intermittency that is the deviation from self-similarity.
Indeed, direct turbulent cascades are generally not scale invariant,4 in
connection with the non-Gaussian nature of the small scales viscous
processes. This is the case for 3D turbulence, where most of the kinetic
energy is dissipated within spatially localized structures. This intermit-
tent statistics of energy dissipation breaks the original Kolmogorov
assumption of self-similarity of the cascade process.5,6 The 2D energy
cascade in classical turbulence is fundamentally different: the presence
of intermittency in the inverse transfer process has been ruled out,3,7,8

intuitively because the energy fluxes are directed toward larger struc-
tures where extreme events due to energy dissipation play no role.
Hence, general understanding suggests that velocity fluctuations are
scale-invariant in the inverse energy cascade.

Quantum turbulence, differently from its classical counterpart, is
intrinsically singular since its basic constituents are discrete, quantized
vortices of unitary topological charge. Nevertheless, both quantum and
classical turbulence exhibit energy cascades, and the observation of an
inverse energy cascade in 2D quantum fluids has been a recent
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development.9–11 In 2D, quantum vortices resemble the point vortex
model proposed by L. Onsager, who described the final stage of the
inverse cascade as an equilibrium state in a negative temperature
regime.12,13 Starting from a Hamiltonian model of a 2D flow in terms
of discrete vortices, Onsager suggested that at sufficiently high energy,
equal sign vortices would approach each other in large cluster, beating
their mutual repulsion, and that this result could explain the appear-
ance of large spatial structures in two-dimensional flows.

The experimental investigation of quantum turbulence, which
began with superfluid helium,14,15 has made great progress with the
realization of Bose–Einstein condensates (BEC) of ultracold
atoms.16–19 One of the main reasons why BECs are important for the
study of quantum turbulence is the possibility of visualizing individual
vortices and describing their dynamics on a microscopic level.20 On
the other hand, an open question is how to bridge the gap between the
discrete picture of quantum vortices and the self-similar nature of clas-
sical inverse energy cascade.21 In particular, we wonder whether the
self-similar spatial correlations may nonetheless emerge in the velocity
field of a quantum fluid, and which are the roots of this evidence in the
system dynamics.

For this purpose, we use an optical system, exciton–polaritons in
semiconductor microcavities. These hybrid light–matter quasiparticles
have been shown in the last few decades to behave like a quantum fluid
of light, manifesting out-of-equilibrium Bose–Einstein condensation
and superfluidity.22–25 We have recently shown that, under suitable
initial conditions, it is possible to induce an inverse cascade of incom-
pressible kinetic energy in 2D polariton quantum fluids.11 Crucially,
these systems allow the measurement of the spatial distribution of the
velocity field with high accuracy, enabling a robust statistical
analysis.26,27

Here, thanks to the direct measurement of the phase of the polar-
iton field, we are able to extract the statistics of the incompressible
velocity in the inverse energy cascade of a quantum fluid. While the
singular nature of quantized vortices manifests itself in the large tails of
velocity increment distribution, the velocity circulations (or vorticity
fluxes) show remarkable scale invariant properties. Moreover, we find
that a coarse graining of the vorticity field allows the identification of
macro-regions of aligned vortex–antivortex dipoles that are responsi-
ble for the appearance of long-range order in the system. We show
that the statistical distribution and fractal dimension of the regions
with correlated vorticity follow the critical behavior predicted near
phase transition in percolation theory. This analysis goes beyond the
classification of first-neighbor vortices and opens to the investigation
of spatial symmetries in 2D quantum turbulence.

II. MAIN RESULTS

We use the same experimental configuration described in a previ-
ous work11 to induce vortex clustering and a transient regime of
inverse kinetic energy cascade after the expansion of a polariton quan-
tum fluid in a confining potential (see supplementary material). The
typical number of vortices is N> 80, with intervortex distances � 2n
and diameter of the confining ring potential > 50n, being n ¼ 2:3 lm
the estimated healing length of the quantum fluid. For our analysis, we
consider the incompressible velocity field uðx; tÞ of the 2D polariton
fluid described by the wave-function wðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

qðx; tÞp
e�ihðx;tÞ, in

the time interval corresponding to the inverse energy cascade. The
total velocity field is given by the gradient of the phase h as

vðx; tÞ ¼ �h
m
rhðx; tÞ; (1)

where m is the polariton mass. The phase of the polariton fluid is
obtained from time-resolved interferometric measurements of the
photons emitted by the microcavity, while the incompressible compo-
nent uðx; tÞ of the velocity field is determined at any point in space by
applying the Helmholtz decomposition to the density weighted veloc-
ity

ffiffiffi
q

p
v.11 We use about 125K pixels per image with a spatial resolu-

tion s � 0:14n. In our experiments, each image is obtained by
averaging thousands of pulses (see supplementary material). Vortex
tracking remains viable due to the shallow potential landscape of our
high-quality sample, which establishes favored positions for vortex
nucleation and trajectories without pinning to spatial defects.11,28 To
improve statistical accuracy, we average over larger time intervals
(always within the inverse energy cascade window), and over few real-
izations of the experiment in different locations of the sample. In
the following, we show the statistics over a total number of pixels
� 2� 107 (accounting for the longitudinal increments along both x
and y axes).

In Fig. 1, the probability density function (PDF) of the longitudi-
nal velocity increments dru � r

r � ½uðx þ rÞ � uðxÞ�, where the velocity
u and the separation r vectors are taken in the same direction, are
shown for increasing spatial scale r ¼ jrj, from r ’ 0:4n to r ’ 14n.
At very small scales, the velocity increment PDF follows a Cauchy dis-
tribution, while it gradually approaches a Gaussian distribution as the
scale increases.29 The presence of exponential tails in the distribution is
clearly visible for every distance, indicating a finite probability of large
jdruj events. This follows directly from the presence of quantized vorti-
ces, where velocity increments manifest their singular behavior.29 This
reflects as well in the lack of self-similarity of the PDFs when rescaled
to their standard deviations as in Fig. 1—self-similarity would entail a

FIG. 1. Probability density functions (PDF) of the longitudinal velocity increments
dr u � r

r � ½uðx þ rÞ � uðxÞ� at scale r, normalized to their standard deviation

r ¼ hðdr uÞ2i1=2. For sub-healing length scales, r < n ¼ 2:3 lm, the PDF follows
a Cauchy–Lorentz distribution (dashed line), while at increasing r it slowly
approaches a Gaussian (dotted line). For every scale, the tails of the distribution
are exponential (dashed-dotted line). Note that the mean inter-vortex distance corre-
sponds to � 5 lm. The lack of a self-similar rescaling of the PDFs is the manifesta-
tion of the singular nature of the vortices and an indication of intermittency.
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collapse of the PDFs onto a single curve, as observed in the classical
case.8 Deviations from Gaussianity, which have been reported for
velocity distributions in 3D as well as in 2D,30,31 can be related to the
fact that energy is injected spontaneously through the nucleation of
vortex dipoles at the healing length scale.32

While the distribution of the velocity increments is not a good
observable to look for scale-invariant properties in a quantum fluid,
moments of velocity circulation have recently been proposed as more
fundamental and unifying quantities.33–35 Velocity circulation is
defined as

CRðxÞ ¼
þ
CR

uðx0Þ � dx0; (2)

where CR is a square loop with opposite corners ðx � R=2; y � R=2Þ
and ðx þ R=2; y þ R=2Þ, while u is the incompressible velocity. In
Fig. 2, we show the PDFs of the velocity circulation, measured on
closed loops of size R. The most striking feature is that scale invariance
now holds: contrary to the case of velocity increments, the PDF of the
velocity circulation on loops of different size rescale with their standard
deviation and collapse on a single (exponential) distribution.
Incidentally, we remark that at difference with the locality regime of
classical inverse cascade, the scaling behaviors of velocity and vorticity
cannot be directly linked in a quantum system.

Self-similarity is a strong feature that suggests the quest for other
global symmetries. Numerical results on classical 2D turbulence have
shown that lines of zero-vorticity, i.e., the boundaries of high vorticity
regions, are stochastic Schramm–Loewner evolution (SLEj) curves.

36

The SLE curves univocally describe the conformal invariant scaling limit
of the interfaces of many 2D critical models, with the parameter j defin-
ing the universal behavior close to threshold. The same universality class
was predicted for cluster boundaries of critical percolation, one of the
most fundamental models of phase transition, and the isovorticity lines
in the inverse energy cascade, also for weakly compressible fluids.37

To explore the appearance of conformal invariant interfaces in
2D quantum turbulence, we consider a continuous field of coarse-
grained vorticity x ¼ r� u (i.e., its flux), defined at each point in
space as the value of velocity circulation CRðxÞ over a square loop of
size comparable to the healing length n. Via the Stokes’ theorem, we
calculate for each point x ¼ ðx; yÞ the vorticity flux through the sur-
face SR enclosed in the loop CR as

CRðxÞ ¼
ð
SR

r� uðx0Þ� � � dSRðx0Þ: (3)

The scalar field CRðxÞ combines the information about the sign and
distribution of dipoles, smoothing the singularities of quantum vorti-
ces. The 2D maps of CRðxÞ are binarized using an upper (lower)

FIG. 2. PDF of the vorticity across the surface SR enclosed in the loop of size R,
defined as in Eq. (3), normalized to its standard deviation r � hC2

Ri1=2. The PDFs
for different values of R all rescale to the same exponential distribution, showing
how the velocity circulation is scale invariant. For comparison, the inset shows the
PDF for the velocity circulations CR with the same values of R but without
rescaling.

FIG. 3. (a) Circulation map of a single frame obtained using Eq. (3) with R ’ 2n,
showing the connected areas with a circulation value above 10% of its maximum.
(b) Zoom of the spatial region [black circle in (a)], to better contrast areas of iso-
vorticity flux with respect to the velocity field streamlines; the positions of the vorti-
ces (orange) and antivortices (green) are also reported. The overlap between
closed velocity lines and the areas we identified is considerable and directly related
to specific orientation of the dipoles.
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threshold to identify the areas with correlated vorticity (see methods).
In Fig. 3(a), we show a typical 2D map for C2nðxÞ with a threshold of
10% of its maximum value. In Fig. 3(b), the region within the black cir-
cle in Fig. 3(a) is magnified to show the underlying organization of
vortices and velocity streamlines. The regions with same sign of
C2nðxÞ are indicated in red and blue, for positive and negative fluxes,
respectively. Vortices and antivortices are also indicated in Fig. 3(b),
showing the close relation between dipole orientation and the forma-
tion of extended regions with similar vorticity. While a first neighbor
classification would only count the presence of a large number of
dipoles, here, we identify clusters of aligned vortex dipoles forming
coherent structures that extend over several healing lengths.

We focus on the statistics of the vorticity (flux) clusters and on
that of their boundaries, for which percolation theory predictions have
already been tested in classical turbulence.36,37 In Fig. 4(a), we show
the distribution n(A) of regions with area A, identified as in Fig. 3(b).
The PDF decreases as a power law nðAÞ / A�a, with the same expo-
nent a independently from the threshold used. The dashed black line
scales as / A�96=91�1 and characterizes the cluster size distribution at
the percolation threshold,38 showing good agreement with the experi-
mental results above the healing length. In the absence of the energy
cascade, we do not observe such clear scaling of the size distribution,
as shown in the supplementary material.

One of the central predictions for SLE curves is their fractal
dimension, which is known to be D ¼ 1þ j=8 and, for percolation,
j¼ 6 and D¼ 7/4. In Fig. 4(b), we plot the perimeter PðAÞ vs the
square root of the intrinsic area A of the connected regions. A clear
scaling PðAÞ / ð ffiffiffiffi

A
p ÞD appears, with the exponent D, indicating the

fractal dimension, which is D> 1. The black line in Fig. 4(b) is the SLE
prediction for percolation, D¼ 7/4, which shows a good agreement
with the experimental results above the healing length. In the absence
of the inverse energy cascade, the perimeter-area scaling is limited by
the smaller spatial extension of the isovorticity regions (see supplemen-
tary material), which have maximum size of � 2:5n as compared to
more than 10n in Fig. 4(b).

III. CONCLUSIONS

To our knowledge, this is the first experimental measurement of
the statistics of the velocity field in turbulent 2D quantum fluids. Our
experiments show that the scale invariance of classical turbulence can
be retrieved by considering velocity circulation instead of velocity
increments.33,34 By the coarse graining of the vorticity field, isovorticity
regions are probed at scales larger than the intervortex distance, aver-
aging out the singularities associated with the vortex cores.31 Based on
the scale-invariance of the circulations, we establish a connection with
critical models in 2D. Real space analysis allows the identification of
correlated vorticity regions with typical size ranging from n to 10n. We
find that these regions share the same statistical behavior of critical
percolation boundaries, enabling a series of predictions to be made on
the properties of the inverse energy cascade in 2D quantum fluids.
Optical systems provide a new experimental platform that can help
unifying the microscopic nature of vortex interactions with the macro-
scopic symmetries of turbulent flows.39–50

SUPPLEMENTARY MATERIAL

See the supplementary material for a description and sketch of
the experimental setup and information about the semiconductor
microcavity sample, a discussion and data of the second order moment
of longitudinal velocity increments, and a comparison with non-
turbulent regime.
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APPENDIX: METHODS

To build a statistics for the connected regions of vorticity flux like
the one shown in Fig. 3, we first compute the curl of the incompressible
velocity field r� uðxÞ and then we construct the scalar field CRðxÞ,
for each image and for R ¼ ½1:4n; 1:96n; 2:5n�. The highest positive
(minimum negative) value for this ensemble of fields CRðxÞ is what we
use to set a threshold that is 5%, 10%, or 20% of this value. For each
field every positive (negative) value that is greater (smaller) than said
threshold is set to 1 (�1), while the rest is set to 0, resulting in the
“binarized” images like the one in Fig. 3(a).

To analyze the resulting connected regions, we labeled them with
the python skimage.measure.label module, using a 2-connectivity. The
area of each region is the number of pixels of the region scaled by
the pixel area, while the perimeter is approximated with a line through
the centers of border pixels using a 4-connectivity.
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